обозначим вк медиану к ас. она же будет и высотой в треугольнике авс, поскольку он равнобедренный. медианы делятся в точке пересечения в отношении 2/1, считая от вершины.по условию во=24, тогда ок=12. по теореме пифагора ак=корень из(аоквадрат-окквадрат)=корень из(162-144)=3корня из 2.тогда основание ас=2*ак=6 корней из 2. обозначим mn отрезок l. треугольники мвn и авс подобны поскольку мn параллельна ас. тогда мn/во=ас/вк. мn/24=(6 корней из 2)/36, отсода искомая длина l=мn=4 корня из 2.
или
sinx=sqrt(1-cos^2x)
sinx=sqrt(1-1/25)=2sqrt(6)/5
а дальше по основной формуле для нахождения тангенса
или
а
i\
i \
i \
└ㅡ \ㅡ ㅡ ㅡ ㅡ e
c в
дано : ∠abe = 150º, ac + ab = 12cм
найти : ав
решение : т.к. ∠abe = 150º , то ∠abс = 30º ⇒ ас = 0.5 * ав
Объяснение:
обозначим вк медиану к ас. она же будет и высотой в треугольнике авс, поскольку он равнобедренный. медианы делятся в точке пересечения в отношении 2/1, считая от вершины.по условию во=24, тогда ок=12. по теореме пифагора ак=корень из(аоквадрат-окквадрат)=корень из(162-144)=3корня из 2.тогда основание ас=2*ак=6 корней из 2. обозначим mn отрезок l. треугольники мвn и авс подобны поскольку мn параллельна ас. тогда мn/во=ас/вк. мn/24=(6 корней из 2)/36, отсода искомая длина l=мn=4 корня из 2.
или
sinx=sqrt(1-cos^2x)
sinx=sqrt(1-1/25)=2sqrt(6)/5
а дальше по основной формуле для нахождения тангенса
или
а
i\
i \
i \
└ㅡ \ㅡ ㅡ ㅡ ㅡ e
c в
дано : ∠abe = 150º, ac + ab = 12cм
найти : ав
решение : т.к. ∠abe = 150º , то ∠abс = 30º ⇒ ас = 0.5 * ав
ac + ab = 12cм
0.5 * ав + ав = 12
1.5 ав = 12
ав = 12 / 1.5
ab = 8
ответ : ав = 8 см
ответ: Ѕ=h₁•h₂/sinα
Объяснение: На приложенном рисунке - АВСD- параллелограмм; ВК и ВМ - его высоты.
Из условия ВК=h₁; BM=h₂, угол КВМ=α.
По одной из формул площадь параллелограмма равна произведению соседних сторон на синус угла между ними.
S(ABCD)=AB•АD•sin(BAD).
Высоты параллелограмма перпендикулярны двум его противоположным сторонам.⇒
Треугольники АВК и ВСМ - прямоугольные.
Сумма острых углов прямоугольного треугольника равна 90°, поэтому в ⊿ АВК ∠АВК=90°-∠ ВАК. Но ∠АВМ =90°, ⇒
∠АВК =90°-угол α ⇒
90°-угол ВАК=90°-угол α. ⇒
∠ ВАК =α.
Противоположные углы параллелограмма равны.
Из ⊿ АВК h₁=AB•sinα ⇒ AB=h₁:sinα
Из⊿ СВМ h₂=BC•sinα ⇒ BC=h₂:sinα
Ѕ(ABCD)=AB•BC•sinα=(h₁:sinα)•(h₂:sinα)•sinα=h₁•h₂/sinα.