средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .
S BB₁C₁C = ?
Работаем с 3-мя прямоугольниками. ABCD, ADC₁B₁, BCC₁B₁
Обозначим: АВ = CD = a, BC = AD = b, CC₁ = x
S BB₁C₁C = хb
SABCD = 12 = ab
SADC₁B₁ = 20 = b*DC₁ ( DC₁ ищем по т. Пифагора из ΔCDC₁
DC₁ = √(x² + a²)
20 = b*√(x² + a²)
рассмотрим систему уравнений:
20 = b*√(x² + a²)
12 = ab
Разделим 1-е уравнение на 2-е. Получим:
20/12 = √(x² + a²)/а, ⇒ 5/3 = √(x² + a²)/а | ², ⇒ 25/9 = (x² + a²)/а², ⇒
⇒25а² = 9(х² + а²), ⇒ 25а² = 9х² + 9а², ⇒16а² = 9х², ⇒ х² = 16а²/9, ⇒
⇒ х = 4а/3
Теперь смотрим S BB₁C₁C = хb = 4a/3*b = 4ab/3 = 4*12/3 = 16
ответ : S BB₁C₁C = 16см²
ответ:
средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .