Тема. Узагальнення і систематизація знань учнів 1. Дві сторони паралелограма дорівнюють 3 см і 5 см, а кут
між нилаи — 30°. Знайдіть:
1) більшу діагональ паралелограма;
2) длощу паралелограма.
2. У трикутнику АВС відомо, що АС = 6 корінь 2 см, вс - 6 см,
кут A = 30°. Знайдіть кут В.
3. Навколо правильного шестикутника ABCDEF зі стороною
8 см описано коло із центром 0,
1) Знайдіть площу сектора, який містить дугу ACE.
2) Укажіть, який відрізок, є образом сторони CD при
повороті навколо центра О проти годинникової стрілки на
кут 120°.
В параллелограмме abcd биссектриса угла a пересекает сторону bc в точке p ,bp:pc=4:3. периметр параллелограмма равен 110 см. найдите стороны параллелограмма
Объяснение:
Дано:
АВСD-параллелограмм ,
АР-биссектриса,
ВР/РС=4/3 , Р=110 см
Найти:
АВ, ВС, АС, СD.
Решение.
АР- биссектриса, значит ∠ВАР=∠РАD.Пусть одна часть х, тогда ВР=4х, ВС(4+3)*х=7х. По свойству противоположных сторон АD=7х.
Т.к. АD║ВС , АP-секущая , то накрест лежащие углы равны ∠DAP=∠ВКP ⇒ΔАВК-равнобедренный по признаку равнобедренного треугольника ⇒АВ=ВP=4х.
Р=АВ+ВС+СD+СD
4х+7х+4х+7х=110,
22х=110 , х=5 .
АВ=СD=4*5=20 (см),
ВС=СD=7*5=35 (см).
Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3)
Известно, что:
R=a^2/sqr(4a^2-b^2)
Подставив значение b, получим: R=a
Отсюда: АВ=2 см
Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда:
r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.