2) ответ: Пусть прямые а и d параллельны прямой с. Можно воспользваться доказательством от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т.е. допустим, что прямые а и dне парелльны, а, значит, перезекаются в некторой точке о. Тогда через точку о проходят 2 прямые а и d, параллельные прямой с, чтио протьиворечит аксиоме параллельных прямых. Таким образо, наше предположение неверно, а, следвательно, прямые а и d параллельны. 5) Пусть прі пересеченіі прямых а і д секуўей АВ внутреніе накрест лежаўіе углы 1 і 2 раны, Докажем, что а пораллельна д. Еслі угол 1= углу 2= 90, то а перпендікулярна АВ и д перепендикулярна АВ, значит с силу теоремы 1 следует, что а параллельна д, Если угол 1= углу 2 и не равен 90, то из середины О трезка АВ проведён отрезок оф перпендикулярен а. На прямой д отложим отрезок ВФ1= АФ и проведём отрезок ОФ!. Заметим, что треугольник офа=треугольнику ОФ1В по двум сторонам и углу между ними
Так как угол 3= равен углу 4, а точки А,В и лежат на1 прямой, т точки Ф1, Ф и Отакже лежат на 1 прямой
Из равенства угол5=углу 6следует, что угол 6=90, получим. что а перпендикулярна ФФ1 и д перпендикулярна ФФ1, а параллельна д
2) ответ: Пусть прямые а и d параллельны прямой с. Можно воспользваться доказательством от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т.е. допустим, что прямые а и dне парелльны, а, значит, перезекаются в некторой точке о. Тогда через точку о проходят 2 прямые а и d, параллельные прямой с, чтио протьиворечит аксиоме параллельных прямых. Таким образо, наше предположение неверно, а, следвательно, прямые а и d параллельны. 5) Пусть прі пересеченіі прямых а і д секуўей АВ внутреніе накрест лежаўіе углы 1 і 2 раны, Докажем, что а пораллельна д. Еслі угол 1= углу 2= 90, то а перпендікулярна АВ и д перепендикулярна АВ, значит с силу теоремы 1 следует, что а параллельна д, Если угол 1= углу 2 и не равен 90, то из середины О трезка АВ проведён отрезок оф перпендикулярен а. На прямой д отложим отрезок ВФ1= АФ и проведём отрезок ОФ!. Заметим, что треугольник офа=треугольнику ОФ1В по двум сторонам и углу между ними
Так как угол 3= равен углу 4, а точки А,В и лежат на1 прямой, т точки Ф1, Ф и Отакже лежат на 1 прямой
Из равенства угол5=углу 6следует, что угол 6=90, получим. что а перпендикулярна ФФ1 и д перпендикулярна ФФ1, а параллельна д
Объяснение:
1) a) C1D
b) AB + AD + AA1 = AB + BC + CC1 = AC + CC1 = AC1
c) B1C - AD = B1C - B1C1 = C1C
d) |DC1|² = 32 + 32 = 64
|DC1| = 8
2) а) ВА + ВС + ВВ1 + D1A = BA
б) BB1 + CD + A1D1 + D1B = BB (здесь как не заменяй вектора, получается ВВ)
а) AB + CC1 + A1D1 + C1A = AA (тоже самое)
б) AB + AA1 + AD + C1D = AD
3) а) CC1 = AA1 ÷ 12см
СВ = DA = 8 см
СD = BA = 9 см
б) |DC1|² = DD1 + D1C1 = DD1 + DC = 144 + 81 = 225
|DC1| = 15 см
|DB|² = DA + AB = 81 + 64 = 145
|DB| = корень из 145
|DB1|² = AD + BB1 = AD + DD1 = 144 + 64 = 208
|DB1| = 4 корень 13