Параллелограмм — четырехугольник, у которого противоположные стороны равны. Допустим, что наш параллелограмм это АВСД. У него АВ=СД, а ВС=АД. Периметр равен сумме всех сторон, значит АВ+СД+ВС+АД=256 2АВ+2ВС=256.
По условию задачи АВ/ВС=0,27/0,13, и исходя из этой пропорции АВ=0,27ВС/0,13. Подставим это значение АВ в предыдущее уравнение: 2АВ+2ВС=256. 2*0,27ВС/0,13+2ВС=256. 0,54ВС/0,13+2ВС=256 ВС*54/13+2*13ВС/13=256 54ВС/13+26ВС/13=256 80ВС/13=256 ВС*80/13=256 ВС=256 / 80/13 ВС=256 * 13/80 ВС=41,6 см Значит ВС=АД=41,6 см
Теперь найдем размеры других сторон параллелограмма: АВ=0,27ВС/0,13 = 0,27*41,6/0,13=86,4 см Значит АВ=СД=86,4 см
ответ: ВС=АД=41,6 см, АВ=СД=86,4 см.
Во втором случае, когда стороны односятся как 3:5, выходит следующее: Параллелограмм — четырехугольник, у которого противоположные стороны равны. Допустим, что наш параллелограмм это АВСД. У него АВ=СД, а ВС=АД. Периметр равен сумме всех сторон, значит АВ+СД+ВС+АД=256 2АВ+2ВС=256.
По условию задачи АВ/ВС=3/5, и исходя из этой пропорции АВ=3ВС/5=0,6ВС. Подставим это значение АВ в предыдущее уравнение: 2АВ+2ВС=256. 2*0,6ВС+2ВС=256. 1,2ВС+2ВС=256 3,2ВС=256 ВС=256/3,2 ВС=80 см Значит ВС=АД=80 см
Теперь найдем размеры других сторон параллелограмма: АВ=0,6ВС = 0,6*80=48 см Значит АВ=СД=48 см
Допустим, что наш параллелограмм это АВСД.
У него АВ=СД, а ВС=АД.
Периметр равен сумме всех сторон, значит
АВ+СД+ВС+АД=256
2АВ+2ВС=256.
По условию задачи АВ/ВС=0,27/0,13, и исходя из этой пропорции
АВ=0,27ВС/0,13.
Подставим это значение АВ в предыдущее уравнение:
2АВ+2ВС=256.
2*0,27ВС/0,13+2ВС=256.
0,54ВС/0,13+2ВС=256
ВС*54/13+2*13ВС/13=256
54ВС/13+26ВС/13=256
80ВС/13=256
ВС*80/13=256
ВС=256 / 80/13
ВС=256 * 13/80
ВС=41,6 см
Значит ВС=АД=41,6 см
Теперь найдем размеры других сторон параллелограмма:
АВ=0,27ВС/0,13 = 0,27*41,6/0,13=86,4 см
Значит АВ=СД=86,4 см
ответ: ВС=АД=41,6 см, АВ=СД=86,4 см.
Во втором случае, когда стороны односятся как 3:5, выходит следующее:
Параллелограмм — четырехугольник, у которого противоположные стороны равны.
Допустим, что наш параллелограмм это АВСД.
У него АВ=СД, а ВС=АД.
Периметр равен сумме всех сторон, значит
АВ+СД+ВС+АД=256
2АВ+2ВС=256.
По условию задачи АВ/ВС=3/5, и исходя из этой пропорции
АВ=3ВС/5=0,6ВС.
Подставим это значение АВ в предыдущее уравнение:
2АВ+2ВС=256.
2*0,6ВС+2ВС=256.
1,2ВС+2ВС=256
3,2ВС=256
ВС=256/3,2
ВС=80 см
Значит ВС=АД=80 см
Теперь найдем размеры других сторон параллелограмма:
АВ=0,6ВС = 0,6*80=48 см
Значит АВ=СД=48 см
ответ: ВС=АД=80 см, АВ=СД=48 см
Параллелограмм — это четырехугольник, у которого противоположные углы равны, при чем одна пара углов это острые углы, а вторая пара углов - тупыми.
Сумма всех углов = 360°.
1) Теперь решим задачу используя первое условие, что один угол в 2 раза больше второго.
Допустим, что каждый из острых углов = Х°.
Значит, размер каждого из тупых углов = 2Х°.
Сумма двух острых и двух тупых углов параллелограмма = 360°.
Выходит, что
х+х+2х+2х=360°
6х=360°
х=60° - размер каждого из острых углов.
Значит, размер каждого из тупых углов = 2Х°=2*60°=120°.
ответ: два угла по 60° и два угла по 120°.
2) Теперь решим задачу используя второе условие, что один угол
на 24° меньше второго.Допустим, что каждый из острых углов = Х°.
Значит, размер каждого из тупых углов = Х°+24°.
Сумма двух острых и двух тупых углов параллелограмма = 360°.
Выходит, что
х+х+(х+24°)+(х+24°)=360°
4х+48°=360°
4х=312°
х=78° - размер каждого из острых углов.
Значит, размер каждого из тупых углов = Х+24°=24°+78°=102°.
ответ: два угла по 78° и два угла по 102°.