Теорема синусiв (та наслiдок з неi про радiус описаного навколо трикутника кола). Також при анализi задачi на знаходження кута за теоремою синусiв застосовуеться властивiсть: у трикутнику проти бiльшоi сторони лежить i бiльший кут.
Трапеция АВСD равнобедренная и по ее свойствам высота ВН из тупого угла делит большее основание AD на два отрезка, меньший из которых AH равен полуразности оснований, то есть AH= 9а-7а=2а. В прямоугольном треугольнике АВН, образованном боковой стороной АВ (гипотенуза) , высотой ВН и меньшим отрезком большей стороны АН (катеты) угол АВН=30°, так как катет АН равен половине гипотенузы АВ. Тогда <A = 60° (так как сумма острых углов прямоугольного треугольника равна 90°), а <B=120° (так как сумма углов трапеции, прилежащих к одной боковой стороне, равна 180°). В равнобедренной трапеции углы при основаниях равны. ответ: углы трапеции <A=<D=60°, <B=<C=120°
Высота пирамиды=8*sin60=8*v3/2=4v3 высота основания (треугольника) =8/2+2=6 сторона основания=6/(v3/2)=6*2/v3=12/v3 объём=4v3*(12/v3)^2/(4v3)=144/3=48 диагональ ромба равна d^2=l^2-h^2 d^2=(15)^2-9^2=144 d=12 и половина диагонали равна d/12=6 Сторона ромба равна p/4=40/4=10 Так как в ромбе в точке пересечения делятся по полам и перпендикулярные то половина второй диагонали равна d1^2=a^2-(d/2)^2=100-36=64 d1^2=8 и вся диагональ равна 16 Площадь ромба равна S=d1*d2/2=12*16/2=96 A объем параллелепипеда равен V=Sосн *H=96*9=864
В прямоугольном треугольнике АВН, образованном боковой стороной АВ (гипотенуза) , высотой ВН и меньшим отрезком большей стороны АН (катеты) угол АВН=30°, так как катет АН равен половине гипотенузы АВ.
Тогда <A = 60° (так как сумма острых углов прямоугольного треугольника равна 90°), а <B=120° (так как сумма углов трапеции, прилежащих к одной боковой стороне, равна 180°). В равнобедренной трапеции углы при основаниях равны.
ответ: углы трапеции <A=<D=60°, <B=<C=120°
высота основания (треугольника) =8/2+2=6
сторона основания=6/(v3/2)=6*2/v3=12/v3
объём=4v3*(12/v3)^2/(4v3)=144/3=48
диагональ ромба равна
d^2=l^2-h^2
d^2=(15)^2-9^2=144
d=12
и половина диагонали равна d/12=6
Сторона ромба равна
p/4=40/4=10
Так как в ромбе в точке пересечения делятся по полам и перпендикулярные
то половина второй диагонали равна
d1^2=a^2-(d/2)^2=100-36=64
d1^2=8 и вся диагональ равна 16
Площадь ромба равна
S=d1*d2/2=12*16/2=96
A объем параллелепипеда равен
V=Sосн *H=96*9=864