а) координаты векторов EF,GH; Координаты вектора равны разности соответствующих координат точек его конца и начала. EF{(-4-4;-10-12} => EF{-8;-22}. GH{4-(-2);-2-6} => GH{6;-8}.
б) длину вектора FG; Модуль вектора (его длина) равен квадратному корню из суммы квадратов его координат. |FG|=√((Xg-Xf)²+(Yg-Yf)²) => √((-2-(-4))²+(6-(-10))²) или √260 = 2√65.
в) координаты точки О – середины EF; координаты точки W – середины GH; координаты середины отрезка EF найдем по формуле: X=(Xe+Xf)/2;Y=(Ye+Yf)/2 или О(0;1); W(1;2).
г) OW; EH; Координаты этих векторов: OW{1;1}; EH{0;-14}. Их модули (длины): |OW|=√(1²+1²) = √2. |EH|=√(0+14²) =14.
д) уравнение окружности с диаметром FG; Центр этой окружности в середине отрезка FG: J(-3;-2). Радиус окружности - половина длины отрезка FG (длина отрезка FG найдена в п.б): √65. Уравнение окружности: (X-Xц)²+(Y-Yц)²=R² => (X+3)+(Y+2)=65.
е) уравнение прямой FH; каноническое уравнение прямой, проходящей через две точки: (X-X1)/(X2-X1)=(Y-Y1)/(Y2-Y1) В нашем случае это уравнение: (X+4)/8=(Y+10)/8 => X-Y-6=0 (общее уравнение прямой) => Y=X-6 - уравнение с угловым коэффициентом (k=1).
1. На прямой "а" строим угол, равный 45°. На Для этого на прямой отмечаем точку А и проводим через нее прямую "b", перпендикулярную прямой "а". Проводим полуокружность из центра А произвольного радиуса и в местах пересечения этой полуокружности с прямыми "а" и "b" отмечаем точки В и С соответственно. Соединяем точки В с С отрезком. Угол СВА равен 45°. Угол СВК равен 180 - 45 = 135° (точку К отмечаем на прямой "а" в любом месте левее точки В => углы СВК и СВА - смежные).
2. Считаем, что Вы умеете строить угол, равный данному.
Строим угол, равный 30°. Для этого проводим вертикальную прямую "а" и отмечаем на ней точку А. Из точки А как из центра проводим полуокружность до пересечения с прямой "а" в точку В. Этим же радиусом проводим полуокружность с центром в точке В и в местах пересечения полуокружностей отмечаем точки C и D. Соединяем точки А,В и С. Угол АСD равен 30°, так как треугольник АВС равносторонний, а CD - биссектриса угла АВС (CD⊥AC).
Теперь на стороне СD строим угол DCE, равный данному. То есть ∠DCE = 35°. Следовательно, ∠АСЕ = 5°.
На прямой СА строим угол FСG, равный данному углу АСЕ.
Повторяем эту процедуру 5 раз. Полученные углы ECF, FCG, GCH, HCI, ICJ, JCK и KCD равны по 5°, то есть мы разделили угол ECD на 7 равных частей.
а) координаты векторов EF,GH; Координаты вектора равны разности соответствующих координат точек его конца и начала. EF{(-4-4;-10-12} => EF{-8;-22}. GH{4-(-2);-2-6} => GH{6;-8}.
б) длину вектора FG; Модуль вектора (его длина) равен квадратному корню из суммы квадратов его координат. |FG|=√((Xg-Xf)²+(Yg-Yf)²) => √((-2-(-4))²+(6-(-10))²) или √260 = 2√65.
в) координаты точки О – середины EF; координаты точки W – середины GH; координаты середины отрезка EF найдем по формуле: X=(Xe+Xf)/2;Y=(Ye+Yf)/2 или О(0;1); W(1;2).
г) OW; EH; Координаты этих векторов: OW{1;1}; EH{0;-14}. Их модули (длины): |OW|=√(1²+1²) = √2. |EH|=√(0+14²) =14.
д) уравнение окружности с диаметром FG; Центр этой окружности в середине отрезка FG: J(-3;-2). Радиус окружности - половина длины отрезка FG (длина отрезка FG найдена в п.б): √65. Уравнение окружности: (X-Xц)²+(Y-Yц)²=R² => (X+3)+(Y+2)=65.
е) уравнение прямой FH; каноническое уравнение прямой, проходящей через две точки: (X-X1)/(X2-X1)=(Y-Y1)/(Y2-Y1) В нашем случае это уравнение: (X+4)/8=(Y+10)/8 => X-Y-6=0 (общее уравнение прямой) => Y=X-6 - уравнение с угловым коэффициентом (k=1).
Объяснение:
Объяснение:
1. На прямой "а" строим угол, равный 45°. На Для этого на прямой отмечаем точку А и проводим через нее прямую "b", перпендикулярную прямой "а". Проводим полуокружность из центра А произвольного радиуса и в местах пересечения этой полуокружности с прямыми "а" и "b" отмечаем точки В и С соответственно. Соединяем точки В с С отрезком. Угол СВА равен 45°. Угол СВК равен 180 - 45 = 135° (точку К отмечаем на прямой "а" в любом месте левее точки В => углы СВК и СВА - смежные).
2. Считаем, что Вы умеете строить угол, равный данному.
Строим угол, равный 30°. Для этого проводим вертикальную прямую "а" и отмечаем на ней точку А. Из точки А как из центра проводим полуокружность до пересечения с прямой "а" в точку В. Этим же радиусом проводим полуокружность с центром в точке В и в местах пересечения полуокружностей отмечаем точки C и D. Соединяем точки А,В и С. Угол АСD равен 30°, так как треугольник АВС равносторонний, а CD - биссектриса угла АВС (CD⊥AC).
Теперь на стороне СD строим угол DCE, равный данному. То есть ∠DCE = 35°. Следовательно, ∠АСЕ = 5°.
На прямой СА строим угол FСG, равный данному углу АСЕ.
Повторяем эту процедуру 5 раз. Полученные углы ECF, FCG, GCH, HCI, ICJ, JCK и KCD равны по 5°, то есть мы разделили угол ECD на 7 равных частей.