ТЕСТ 8 Вариант 1 1. На рисунке точка 0 — центр окружности; назовите изображенные отрезки с концами в обозначенных точках, которые являются ра- диусами, диаметрами и хордами окружности.
2. Площадь параллелограмма S = a*h, где a - основание, а h - высота. Поскольку дана большая высота, то основанием является меньшая сторона (поскольку шлощадь неизменна, то для большей стороны высота будет меньшей).
S = 12*7 = 84 см²
3. Площадь равнобедренного треугольника S = (1/2)*b*h, где b - основание, а h - высота. Известна боковая сторона - а и высота h. Боковая сторона, высота и половина основания образуют прямоугольный треугольник. Применяем теорему Пифагора:
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
1. в) 1440°
2. а) 84 см²
3. г) 108 см²
Объяснение:
1. Суммы углов выпуклого n-угольника = 180°(n-2)
Для n = 10, Сумма углов = 180°*8 = 1440°
2. Площадь параллелограмма S = a*h, где a - основание, а h - высота. Поскольку дана большая высота, то основанием является меньшая сторона (поскольку шлощадь неизменна, то для большей стороны высота будет меньшей).
S = 12*7 = 84 см²
3. Площадь равнобедренного треугольника S = (1/2)*b*h, где b - основание, а h - высота. Известна боковая сторона - а и высота h. Боковая сторона, высота и половина основания образуют прямоугольный треугольник. Применяем теорему Пифагора:
a² = (b/2)² + h² => b = 2*√(a² - h²) = 2*√15² - 9² = 2*12 = 24
S = (1/2)*24*h = 108 см²