Вот такое нахальное решение. ну уж простите : )пусть катеты a и b, гипотенуза с. я строю квадрат со сторонами (a + b), и дальше обхожу все 4 стороны по часовой стрелке, откладывая отрезок а от вершины. (пояснение.построенный со стороной (a + b) с вершинами аbcd, а - "левая нижняя" вершина. от а вверх - вдоль ав, откладывается а, потом от в вправо - вдоль вс откладывается а, потом от с вниз, вдоль cd, откладывается а, и от d вдоль da откладывается а.)все эти точки соединяются.получился квадрат со стороной с, вписанный в квадрат со стороной (a+b).ясно, что центры этих квадратов . это автоматически доказывает то, что надо в . (если не ясно, постройте там пару треугольников из диагоналей обоих квадратов и отрезков длины а и докажите их равенство. на самом деле не надо ничего доказывать - эта фигура из двух квадратов переходит сама в себя при повороте вокруг центра большого квадрата на 90 градусов. поэтому центр "вписанного" квадрата совпадает с центром большого, то есть лежит на биссктрисе прямого угла большого квадрата. ну, и биссектрисе прямого угла исходного треугольника, само собой - это одно и то же. этих треугольников там даже четыре, а не один : ), можно любой выбрать за исходный.)
8. Припустим, что k i l паралельны, а m секущая. Тогда тут будут действовать теоремы о внутрених и внешних углах с секущей
Вертикальные угол, с углом 36° будет 36°
Модем видет, что здесь действует теорема о внутреннем и внешнем углах сума которых ровна 180°. По этому k||l
9. Рассмотрим треугольник АВС
АВ=СА
то есть треугольник АВС равнобедренный
с этого модем скать, что ВС основа, угол В = углу С
На рисунку 9 видим, что дано два угла и они равны
Соответственно угол С будет равен тем двом углам, так как они равны и один из рих равен углу С
Тут мы мы можем предположить, что ВС может быть секущей и тогда внутренние разносотороние куты должны будут быть равны если a||b.
Соответственно a||b