Для начала определимся, что это за треугольник. Допустим, что равные углы по 75 град(исходя из второго выражения), что исключает первое выражение, т.к. угол отрицательным быть не может Тогда делаем другое предположение, что равные углы по 30 град(из первого утверждения), получается, что третий угол должен быть равен 120 град, и если мы сложим 30+30+120=180, то мы получим верное утверждение. Теперь рассмотрим, что же за треугольники у нам вышли, допустим, что две равные стороны равны 1(это будет гипотенузой, если провести высоту в равнобедренном треугольнике). Чтобы определить половину длины основания достаточно воспользоваться соотношением: sin60=V3/2, т.е. основание будет равно V3, т.е. мы получили треугольник с отношением сторон 1:1:V3. Что дает нам сделать вывод, что данные треугольники не подобны.
Пусть даны две прямые
y=k _{1} xy=k
1
x ,y=k _{2} xy=k
2
x
Причем tg \alpha _{1}=k _{1}tgα
1
=k
1
tg \alpha _{2} =k _{2}tgα
2
=k
2
Найдем тангенс угла между этими прямыми:
tg( \alpha _{1} - \alpha _{2})= \frac{tg \alpha _{1}-tg \alpha _{2} }{1+tg \alpha _{1}tg \alpha _{2} }= \frac{k _{1}-k _{2} }{1+k _{1}k _{2} }tg(α
1
−α
2
)=
1+tgα
1
tgα
2
tgα
1
−tgα
2
=
1+k
1
k
2
k
1
−k
2
Прямые перпендикулярны, угол между ними 90⁰. Тангенс 90⁰ не существует, значит в последней дроби знаменатель равен 0,k _{1} k _{2} =-1k
1
k
2
=−1
это необходимое и достаточное условие перпендикулярности двух прямых
y=k _{1}xy=k
1
x ,y=k _{2} xy=k
2
x
Данная прямая может быть записана в виде y= \frac{5}{2} x+ \frac{7}{2}y=
2
5
x+
2
7
Угловой коэффициент равен 5/2,
Значит угловой коэффициент перпендикулярной ей прямой будет равен (-2/5).
ответ. y=- \frac{2}{5}xy=−
5
2
x
И все прямые ей параллельные, то есть
y=- \frac{2}{5}xy=−
5
2
x +С,
где С- любое действительное число
Объяснение:
решение не мое
Тогда делаем другое предположение, что равные углы по 30 град(из первого утверждения), получается, что третий угол должен быть равен 120 град, и если мы сложим 30+30+120=180, то мы получим верное утверждение.
Теперь рассмотрим, что же за треугольники у нам вышли, допустим, что две равные стороны равны 1(это будет гипотенузой, если провести высоту в равнобедренном треугольнике). Чтобы определить половину длины основания достаточно воспользоваться соотношением: sin60=V3/2, т.е. основание будет равно V3, т.е. мы получили треугольник с отношением сторон 1:1:V3. Что дает нам сделать вывод, что данные треугольники не подобны.