АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Объяснение:
402
х - периметр
1 случай: основание = x - 40; боковые стороны = x - 30
x - 40 + 2(x-30) = 3x - 100 = x - периметр
2x = 100
x = 50
основание = 10, боковые стороны по 20
2 случай: основание = x - 30; боковые стороны = x - 40
x - 30 + 2(x-40) = 3x - 110 = x - периметр
2x = 110
x = 55
основание 25; боковые стороны по 15
404
x - углы при основании; 180 - 2x - между боковыми сторонами
1 случай:
x + (180-2x) = 60
x = 120 - невозможно
2 случай:
x + x = 60
x = 30
углы при основании по 30, угол между боковыми сторонами 180-60=120
405
Внешний угол при основании не может быть острым, потому что тогда сам угол при основании будет тупым - этот случай отпадает
Соответственно, угол между боковыми сторонами равен 180-15=165
Тогда углы при основании равны 15/2 = 7,5
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.