1) Все диаметры окружности равны между собой – верно. Диаметр - отрезок, проходящий через центр окружности и равен двум радиусам. Все радиусы одной окружности равны.
2) Сумма углов любого треугольника равна 360 градусам – неверно. Сумма углов любого треугольника 180°
3) Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом. Верно. В параллелограмме противоположные стороны равны и параллельны. Если равны и соседние стороны, то все стороны равны. Параллелограмм, все стороны которого равны – ромб.
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.
Диаметр - отрезок, проходящий через центр окружности и равен двум радиусам. Все радиусы одной окружности равны.
2) Сумма углов любого треугольника равна 360 градусам – неверно. Сумма углов любого треугольника 180°
3) Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом. Верно.
В параллелограмме противоположные стороны равны и параллельны. Если равны и соседние стороны, то все стороны равны. Параллелограмм, все стороны которого равны – ромб.
дана трапеция ABCD
EM - средняя линия
пересекает диагонали в точках К и N
AC и BD - диагонали
из свойств средней линии трапеции: EM||BC||AD
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.