построй произвольный четырёхугольник cdef, проведи прямую ce. на прямой ce отметь три точки: одна внутри четырехугольника, две вне его, слева ниже и справа выше. обзови точки g1, g2,g3. через эти три точки проведи три прямые, параллельные cd. проведи прямые cf,ed. у тебя получилось шесть точек пересечения прямых с плоскостью а: когда эта плоскость выше, ниже четырёхугольника и когда она пересекает его. а линии пересечения плоскостей (опять же для трёх случаев) ты уже провела: параллельные прямые через g1, g2, g3.
ответ:
объяснение:
построй произвольный четырёхугольник cdef, проведи прямую ce. на прямой ce отметь три точки: одна внутри четырехугольника, две вне его, слева ниже и справа выше. обзови точки g1, g2,g3. через эти три точки проведи три прямые, параллельные cd. проведи прямые cf,ed. у тебя получилось шесть точек пересечения прямых с плоскостью а: когда эта плоскость выше, ниже четырёхугольника и когда она пересекает его. а линии пересечения плоскостей (опять же для трёх случаев) ты уже провела: параллельные прямые через g1, g2, g3.
6.
∠ВDA+∠BDM=180°-т.к. смежные.
⇒∠BDA=180°-∠BDM=180°-120°=60°.
Если ΔCBD-равнобедренный и ВА-медиана, то ВА-высота и биссектриса.
∠BCD=∠BDC=60°-углы при основании равноб. тр-ка.
∠СВА+∠ВСА+∠ВАС=180°-сумма углов ΔСВА
∠СВА=180°-∠ВСА-∠ВАС=180°-60°-90°=30°
ответ: ∠CBA=30°
7.
∠ВСМ и ∠ВСА-смежные, значит ∠ВСМ+∠ВСА=180°.
⇒∠ВСА=180°-∠ВСМ=180°-80°=100°.
ΔВСА-равнобедренный, отсюда следует равенство сторон ВС и СА; и равенство углов ∠СВА и ∠САВ.
Сумма углов любого треугольника равна 180°
⇒∠CВA+∠BСA+∠CАB=180°; ∠CВA+100°+∠CАB=180°; ∠СВА+∠САВ=80°.
∠СВА=∠САВ=80°/2=40°
ответ: ∠СВА=40°