Боковая поверхность состоит из 4 одинаковых треугольников. Найдем площадь одного из них: S=1/2*AD*MH. AD - гипотенуза в прямоугольном треугольнике АОD, т.к. диагонали ромба перпендикулярны. АД=корень из 4*4+3*3=5 см.МН находим как гипотенузу из прямоугольного треугольника МОН. Синус угла МНО=5/13. Синус - отношение противолежащего катета МО к гипотенузе МН. МО/МН=5/13. По основному тригонометрическому тождеству найдем косинус этого угла корень из 1-25/169=корень из 144/169=12/13. Т.о. ОН/МН=12/13. ОН - высота в прямоугольном треугольнике АОД, ее можно найти по формуле АО*ОД/АД=4*3/5=2,4 см. 2,4/МН=12/13, отсюда МН=13/5=2,6 см. S=1/2*5*2,6=6,5 см. кв. Площадь боковой поверхности 4*6,5=26 см.кв.
Всё проще простого) Смотри, что нам известно: диагональ и сторона. Причём диагональ, сторона и неизвестная сторона образуют прямоугольный треугольник. Ничего не напоминает? Правильно: теорема Пифагора! :) Квадрат гипотенузы (то бишь диагонали) равен сумме квадратов катетов (то есть квадраты известной и неизвестной сторон): 100 = 64 + x^2; x^2 = 36; x = 6. Итак, неизвестная сторона найдена. Осталось только найти площади и периметр) Площадь прямоугольника равна произведению его смежных (соседних) сторон: 8 * 6 = 48. Теперь периметр - это сумма всех сторон: 6 + 6 + 8 + 8 = 28. Вот и всё)
Смотри, что нам известно: диагональ и сторона. Причём диагональ, сторона и неизвестная сторона образуют прямоугольный треугольник. Ничего не напоминает? Правильно: теорема Пифагора! :)
Квадрат гипотенузы (то бишь диагонали) равен сумме квадратов катетов (то есть квадраты известной и неизвестной сторон): 100 = 64 + x^2; x^2 = 36; x = 6.
Итак, неизвестная сторона найдена. Осталось только найти площади и периметр)
Площадь прямоугольника равна произведению его смежных (соседних) сторон: 8 * 6 = 48.
Теперь периметр - это сумма всех сторон: 6 + 6 + 8 + 8 = 28.
Вот и всё)