Проведем высоты как показано на рисунке. MN=BC=5 (т.к. BCNM - прямоугольник). BM=CN=h Обозначим AM как x, для удобства. AD=AM+MN+ND 20=x+5+ND ND=15-x Для треугольника ABM запишем теорему Пифагора: AB2=h2+x2 202=h2+x2 h2=400-x2 Для треугольника CDN запишем теорему Пифагора: CD2=h2+ND2 252=h2+(15-x)2 625=h2+(15-x)2 Подставляем вместо h2 значение из первого уравнения: 625=400-x2+(15-x)2 625-400=-x2+152-2*15*x-x2 225=152-2*15*x 225=225-30x 30x=0 x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции. Тогда площадь трапеции равна: S=AB(AD+BC)/2=20(20+5)/2=10*25=250
Объяснение:
Проведем высоты как показано на рисунке. MN=BC=5 (т.к. BCNM - прямоугольник). BM=CN=h Обозначим AM как x, для удобства. AD=AM+MN+ND 20=x+5+ND ND=15-x Для треугольника ABM запишем теорему Пифагора: AB2=h2+x2 202=h2+x2 h2=400-x2 Для треугольника CDN запишем теорему Пифагора: CD2=h2+ND2 252=h2+(15-x)2 625=h2+(15-x)2 Подставляем вместо h2 значение из первого уравнения: 625=400-x2+(15-x)2 625-400=-x2+152-2*15*x-x2 225=152-2*15*x 225=225-30x 30x=0 x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции. Тогда площадь трапеции равна: S=AB(AD+BC)/2=20(20+5)/2=10*25=250
Внимание :
Вы не указали у. Найдём за вами х и сторону , как предположительный у.
х=7
Сторона =2
Объяснение:
1)Тк трапеция равнобочная ( по условию рисунка), то угол А=углу Д = 60 градусов.
2) Треугольник СЕД - прямоугольный , тк СЕ - высота ( по усл рисунка) , тогда угол ЕСД=180-90-60=30.
3) катет против 30 градусов =1/2 гипотенузы ( запомнить, очень пригодится ).
Пусть боковая сторона трапеции=у, тогда по теореме Пифагора :
у^2=(sqrt 3)^2 +(у/2)^2
3/4 *у^2=3
у=2 сторона. Тогда ЕД = 2* 1/2=1.
4) опустим перпендикуляр ВО. Тогда ОЕ =ВС =5, и АО=ЕД =1.
Тогда АД= 1+5+1=7 ( тк треугольники равны по второму признаку УСУ)
если что-то не понятно, пишите в комментах. Успехов в учёбе! justDavid