В треугольнике АВС известно, что АВ = ВС = 13см, АС = 10см.К кругу вписанному в этот треугольник, проведена касательная, которая параллельна основанию АС и пересекает сторону АВ и ВС в точках М и К соответственно. Вычислить площадь треугольника МВК.
Высота тр-ка АВС Н = √13²-5²=√144=12 cм
Из подобия треугольников найдем радиус вписанной окружности
AB/(AC/2)=(Н-r)/r
13r = 5(12-r)
13r+5r=60
18r=60
r = 3⅓ см
Высота тр-ка МВК h=H-2r = 12-20/3 = 16/3 см
Из подобия тр-ков МК/AC=h/H, MK=10*(16/3)/12 = 40/9 см
В треугольнике АВС известно, что АВ = ВС = 13см, АС = 10см.К кругу вписанному в этот треугольник, проведена касательная, которая параллельна основанию АС и пересекает сторону АВ и ВС в точках М и К соответственно. Вычислить площадь треугольника МВК.
Высота тр-ка АВС Н = √13²-5²=√144=12 cм
Из подобия треугольников найдем радиус вписанной окружности
AB/(AC/2)=(Н-r)/r
13r = 5(12-r)
13r+5r=60
18r=60
r = 3⅓ см
Высота тр-ка МВК h=H-2r = 12-20/3 = 16/3 см
Из подобия тр-ков МК/AC=h/H, MK=10*(16/3)/12 = 40/9 см
S = ½MK*h = 40*16/(2*9*3)= 320/27 = 11+23/27 cм²
AE -перпендикуляр из тупого угла к стороне DC, DE = EC.
трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая)
=> в равных тр-ах против равных сторон лежат равные углы: ADE = ECA
=> ECA = ADC = ABC = x
=> DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса)
сумма углов ромба равна 360 градусам =>
2x + 2x +x + x = 360
ADC = ABC = x = 60 (острый угол ромба)
DCB = DAB = 2х = 120 (тупой угол ромба) .Это?