Точка 0 - середина ребра BB' прямой треугольной призмы ABCA'B'C' Вычислите площадь сечения призмы плоскостью АCO. если градусная мера двугранного угла равна 30°. AC = 3 см, BC = 4 см, угол АСВ – 90°.
Условие задачи дано с ошибкой. Должно быть так: В ΔАВС АВ = 15, АС = 20, ВС = 32. На стороне АВ отложен отрезок АD = 9 см, на стороне АС отрезок АЕ = 12 см. Найти DЕ и отношение площадей треугольника АВС и АDЕ.
AD : AB = 9 : 15 = 3 : 5 AE : AC = 12 : 20 = 3 : 5 ∠А - общий для треугольников АВС и ADE, значит ΔАВС подобен ΔADE по двум пропорциональным сторонам и углу между ними. Коэффициент подобия: k = 3/5 DE : BC = 3 : 5 DE : 32 = 3 : 5 DE = 32 · 3 / 5 = 19,2 Площади подобных треугольников относятся как квадрат коэффициента подобия: Sabc : Sade = 9 : 25
В ΔАВС АВ = 15, АС = 20, ВС = 32. На стороне АВ отложен отрезок АD = 9 см, на стороне АС отрезок АЕ = 12 см. Найти DЕ и отношение площадей треугольника АВС и АDЕ.
AD : AB = 9 : 15 = 3 : 5
AE : AC = 12 : 20 = 3 : 5
∠А - общий для треугольников АВС и ADE, значит
ΔАВС подобен ΔADE по двум пропорциональным сторонам и углу между ними.
Коэффициент подобия:
k = 3/5
DE : BC = 3 : 5
DE : 32 = 3 : 5
DE = 32 · 3 / 5 = 19,2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sabc : Sade = 9 : 25
пусть точки А1 и А2 принадлежат прямой а
точки В1 и В2 принадлежат прямой б
с пересекает а в точке О1
с пересекает б в точке О2
а параллельна б
угол А1О1С=20 градусов
угол А1О1А2 развернутый и равен 180, тогда угол А2О1С смежный с углом А1О1С и равен 180-20=160
А1О1С и О2О1А2 вертикальные, значит они равные и равны 20
А2О1О2 и В1О2О1 внутренние накрест лежащие и тоже равны между собой по 20
В1О2О1 и В2О2С вертикальные и равны 20
А2О1С и О2О1А1 вертикальные и равные, равны по 160
А1О1О2 и В1О2О1 внутренние накрест лежащие, поэтому равные и равны по 160
В2О2О1 и В1О2С вертикальные, равны по 160