АВ=CD так как противоположные стороны параллелограмма равны. Тогда 0,5*АВ=0,5*CD.
Так как К – середина АВ, то АК=0,5*АВ.
Так как Е – середина CD, то ЕС=0,5*CD.
Получим что АК=ЕС.
АК//ЕС, так как AB//CD, поскольку противоположные стороны параллелограмма параллельны.
Тогда получим что AECK – параллелограмм, так как противоположные стороны паралельны и равны. Следовательно АЕ//КС так как противоположные стороны параллелограмма параллельны.
По обобщённой теореме Фалеса: параллельные прямые отсекают на сторонах угла пропорциональные отрезки.
То есть:
Пусть СЕ=n, тогда ED=n так же, так как CE=ED. Тогда:
Пусть AK=m, тогда КВ=m так же, так как AK=KB.
Получим что PD:LP:BL=1:1:1, или иначе говоря отрезки равны.
АВ=CD так как противоположные стороны параллелограмма равны. Тогда 0,5*АВ=0,5*CD.
Так как К – середина АВ, то АК=0,5*АВ.
Так как Е – середина CD, то ЕС=0,5*CD.
Получим что АК=ЕС.
АК//ЕС, так как AB//CD, поскольку противоположные стороны параллелограмма параллельны.
Тогда получим что AECK – параллелограмм, так как противоположные стороны паралельны и равны. Следовательно АЕ//КС так как противоположные стороны параллелограмма параллельны.
По обобщённой теореме Фалеса: параллельные прямые отсекают на сторонах угла пропорциональные отрезки.
То есть:
Пусть СЕ=n, тогда ED=n так же, так как CE=ED. Тогда:
Пусть AK=m, тогда КВ=m так же, так как AK=KB.
Получим что PD:LP:BL=1:1:1, или иначе говоря отрезки равны.
ответ: 1
ответ: 15,777π, иначе 49,54 (ед. площади)
Объяснение: Формула площади круга S(кр)=πr^2
Нужный радиус можно найти по одной из формул площади треугольника:
S = r•р, где р — полупериметр, r — радиус вписанной окружности⇒
r=S/p
По другой формуле Ѕ ∆ MKN=MK•NK•sin30°/2.
Ѕ=20•20•0,5/2=100 (ед.площади).
Для нахождения периметра третью сторону найдем по той же формуле, но с другой стороной:
Ѕ(MKN)=МК•МN•sin(KMN)/2
∆MKN - равнобедренный, ⇒углы при МN=(180°-30°)/2=75°
sin75°≈0,9659
100=20•MN•0,9659/2⇒
MN≈10,353
p(MKN)=0,5•(2•20+10,353)≈25,1765
r=S/p=100/25,1765≈3,972
Ѕ(круга)=πr²=15,777π или при π=3,14 S(круга)=49,54 (ед. площади)