Диагональное сечение правильной усеченной четырехугольной пирамиды является равнобедренной трапецией, основания которой 4√2 и 6√2( их находим по теореме Пифагора), а боковые стороны образуют с основаниями углы по 45°. Начерти эту трапецию и проведи в ней 2 высоты: получится прямоугольник и два прямоугольных равнобедренных треугольника( у них углы по 45°). Горизонтальный катет находим (6√2 - 4√2) / 2 = √2. Такая и высота трапеции. S =(4√2 + 6√2) / 2*√2 = 5√2 * √2 = 10 cм². К доске с этим ответом. "5" обеспечена.
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
4√2 и 6√2( их находим по теореме Пифагора), а боковые стороны образуют с основаниями углы по 45°. Начерти эту трапецию и проведи в ней 2 высоты: получится прямоугольник и два прямоугольных равнобедренных треугольника( у них углы по 45°). Горизонтальный катет находим (6√2 - 4√2) / 2 = √2. Такая и высота трапеции. S =(4√2 + 6√2) / 2*√2 = 5√2 * √2 = 10 cм². К доске с этим ответом. "5" обеспечена.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.