Точка а лежит в плоскости (а), а точка в - вне этой плоскости. через точку м, делящую отрезок ав в отношении 3: 4(считая от а) проведён отрезок мс =8см, мс||(а). на каком расстоянии от точки а лежит точка пересечения прямой bc с плоскостью (а)?
ΔАВС - равнобедренный , АС - основание , ∠В - противолежащий основанию. По свойствам равнобедренного треугольника: АВ=ВС - боковые стороны равны ∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны. Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный. ∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании . Сумма углов треугольника = 180° х+ 2х+2х=180 5х= 180 х=180/5 = 36° - ∠НАС ∠Н= ∠С= 36×2= 72 ° ⇒ Углы при основании ΔАВС ∠А=∠С= 72° ∠В= 180° - 72°×2= 180° - 144°=36° ответ: ∠В= 36°.
ΔАВС - равнобедренный , АС - основание , ∠В - противолежащий основанию. По свойствам равнобедренного треугольника: АВ=ВС - боковые стороны равны ∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны. Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный. ∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании . Сумма углов треугольника = 180° х+ 2х+2х=180 5х= 180 х=180/5 = 36° - ∠НАС ∠Н= ∠С= 36×2= 72 ° ⇒ Углы при основании ΔАВС ∠А=∠С= 72° ∠В= 180° - 72°×2= 180° - 144°=36° ответ: ∠В= 36°.
По свойствам равнобедренного треугольника:
АВ=ВС - боковые стороны равны
∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны.
Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный.
∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании .
Сумма углов треугольника = 180°
х+ 2х+2х=180
5х= 180
х=180/5 = 36° - ∠НАС
∠Н= ∠С= 36×2= 72 ° ⇒
Углы при основании ΔАВС ∠А=∠С= 72°
∠В= 180° - 72°×2= 180° - 144°=36°
ответ: ∠В= 36°.
По свойствам равнобедренного треугольника:
АВ=ВС - боковые стороны равны
∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны.
Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный.
∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании .
Сумма углов треугольника = 180°
х+ 2х+2х=180
5х= 180
х=180/5 = 36° - ∠НАС
∠Н= ∠С= 36×2= 72 ° ⇒
Углы при основании ΔАВС ∠А=∠С= 72°
∠В= 180° - 72°×2= 180° - 144°=36°
ответ: ∠В= 36°.