Точка а не лежит на прямой а. через точку а проводятся прямые: 1) пересекающие прямую а. 2) скрещивающиеся с прямой а какое множество точек заполняю эти прямые?
Обозначь длину прямоугольника буквой х, тогда ширина его будет х-2. В твоем условии не понятно, длину какой стороны надо увеличить на 4 см, только длины, только ширины или и той, и той? Прочитай внимательно условие! Допустим, именно длину, тогда площадь увеличенного прямоугольника можно записать уравнением: (х+4)*(х-2)= 48, раскрываем скобки и получаем квадратное уравнение: х2+4х-2х-8 = 48, х2+2х-52 = 0 (х2 - это х в квадрате). решив его , найдешь длину х, ширина, соответственно, на 2 см меньше. Если увеличены на 4 см обе стороны, то уравнение: (х+4)*(х-2+4) = 48, (х+4)*(х+2) = 48; х2+4х+2х+8 = 48; х2+6х-40 = 0, в этом случае, D = 9 +40=49 (т.к. уравнение приведенное, а b -четное), х = 10см - это длина, ширина - 8см
Правильная пирамида — это пирамида, основанием которой является правильный многоугольник, а вершина пирамиды проецируется в центр этого многоугольника.
Диагонали, проведенные через центр основания данной пирамиды, делят его на 6 правильных треугольников со стороной 3 см.
Обозначим пирамиду ABCDEF, центр - О.
Высота МО и половина ВО диагонали ВЕ образуют прямоугольный треугольник МОВ, острый угол МВО=45°. ⇒ Это равнобедренный треугольник, и МО=ВО=3 см.
Объём пирамиды равен 1/3 произведения высоты на площадь основания.
Площадь правильного шестиугольника – сумма площадей 6 правильных треугольников, площадь которых найдем по формуле:
(х2 - это х в квадрате). решив его , найдешь длину х, ширина, соответственно, на 2 см меньше. Если увеличены на 4 см обе стороны, то уравнение: (х+4)*(х-2+4) = 48, (х+4)*(х+2) = 48; х2+4х+2х+8 = 48;
х2+6х-40 = 0, в этом случае, D = 9 +40=49 (т.к. уравнение приведенное, а b -четное), х = 10см - это длина, ширина - 8см
Правильная пирамида — это пирамида, основанием которой является правильный многоугольник, а вершина пирамиды проецируется в центр этого многоугольника.
Диагонали, проведенные через центр основания данной пирамиды, делят его на 6 правильных треугольников со стороной 3 см.
Обозначим пирамиду ABCDEF, центр - О.
Высота МО и половина ВО диагонали ВЕ образуют прямоугольный треугольник МОВ, острый угол МВО=45°. ⇒ Это равнобедренный треугольник, и МО=ВО=3 см.
Объём пирамиды равен 1/3 произведения высоты на площадь основания.
Площадь правильного шестиугольника – сумма площадей 6 правильных треугольников, площадь которых найдем по формуле:
Площадь основания
6•9√3/4 sm²