Расстояние от точки P до плоскости правильного шестиугольника со стороной 8 см равно 8 см. Найдите расстояние от точки P до сторон шестиугольника, если она равноудалена от каждой из них.
РЕШЕНИЕ:
• Если точка Р равноудалена от сторон правильного шестиугольника, то она проецируется в центр шестиугольника, то есть в точку пересечения его бо'льших диагоналей, в точку О. • Опустим из точки О перпендикуляр ОТ к СD. РО перпендикулярен ОТ, ОТ перпендикулярен CD, следовательно по теореме о трёх перпендикулярах РТ перпендикулярен CD, то есть PT - искомое расстояние. • Бо'льшие диагонали правильного шестиугольника делят его на шесть правильных, то есть равносторонних треугольников. • В тр. COD: OT = CDV3 / 2 = 8V3 / 2 = 4V3 см В тр. РТО : по т. Пифагора РТ = V( ( 4V3 )^2 + 8^2 ) = V( 48 + 64 ) = V112 = 4V7 см.
прямые b и с параллельны так как накрест лежащие углы равны, согласно рисунку. это согласовывается с теоремой о пересечении двух прямых секущей:
1) накрест лежащие углы равны
2) соответсвенные углы равны.
Доказательство:
предположим, что b и с не параллельны. тогда они должны пересекаться в какой-то точке М. Тогда выходит треугольник. Внешний угол должен быть больше, согласно теореме внешних углов. Но это противоречит условию.
Также соответственные углы у а и b равны. Значит они также параллельны.
РЕШЕНИЕ:
• Если точка Р равноудалена от сторон правильного шестиугольника, то она проецируется в центр шестиугольника, то есть в точку пересечения его бо'льших диагоналей, в точку О.
• Опустим из точки О перпендикуляр ОТ к СD. РО перпендикулярен ОТ, ОТ перпендикулярен CD, следовательно по теореме о трёх перпендикулярах РТ перпендикулярен CD, то есть PT - искомое расстояние.
• Бо'льшие диагонали правильного шестиугольника делят его на шесть правильных, то есть равносторонних треугольников.
• В тр. COD: OT = CDV3 / 2 = 8V3 / 2 = 4V3 см
В тр. РТО : по т. Пифагора РТ = V( ( 4V3 )^2 + 8^2 ) = V( 48 + 64 ) = V112 = 4V7 см.
ОТВЕТ: 4V7.
а и b, c параллельны.
Объяснение:
прямые b и с параллельны так как накрест лежащие углы равны, согласно рисунку. это согласовывается с теоремой о пересечении двух прямых секущей:
1) накрест лежащие углы равны
2) соответсвенные углы равны.
Доказательство:
предположим, что b и с не параллельны. тогда они должны пересекаться в какой-то точке М. Тогда выходит треугольник. Внешний угол должен быть больше, согласно теореме внешних углов. Но это противоречит условию.
Также соответственные углы у а и b равны. Значит они также параллельны.
***
Если не понял, пиши. Я сам еле объяснил.