Рискну, все-таки, представить решение. Возьмем произвольную точку С на окружности (O;R). Треугольник АВС - прямоугольный, так как опирается на диаметр. Точка J - центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС. Проведем прямую СJ до пересечения с описанной окружностью (O;R). Точка пересечения D - конец диаметра, так как вписанный <DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается). Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ. Проведем прямую АJ до пересечения с описанной окружностью (O;R). <BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ. И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В. Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).
Дано: треугольник АВС - прямоугольный, АВ - гипотенуза, АС < ВС, АС = 10 см, Р - центр вписанной окружности, K, L, M - точки касания сторон АС, ВС, АВ - соответственно, РМ = 3 см, О - центр описанной окружности. Решение: 1. Рассмотрим LCKP - вкадрат по свойству радиуса, проведенного в точку касания, имеем КС = LC = 3 см, АК = АС - КС = 10 - 3 = 7 см. 2. По свойству касательных имеем КА = МА = 7 см, МВ = LB = х, LC = KC = 3 см, тогда по теореме Пифагора для прямоугольного треугольника АВС плучаем АС^2 + BC^2 = AB^2 10^2 + (x + 3)^2 = (x + 7)^2 100 + x^2 + 6x + 9 = x^2 + 14x + 49 8x = 60 x = 15/2 см, АВ = 15/2 + 7 = 29/2 см. 3. Зная, что центр окружности, описанной около прямоугольного треугольника, совпадает с серединой его гипотенузы, находим АО = АВ/2 = 0,5*29/2 = 29/4 см. ответ: 29/4 см.
Возьмем произвольную точку С на окружности (O;R).
Треугольник АВС - прямоугольный, так как опирается на диаметр.
Точка J - центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС.
Проведем прямую СJ до пересечения с описанной окружностью (O;R).
Точка пересечения D - конец диаметра, так как вписанный
<DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается).
Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ.
Проведем прямую АJ до пересечения с описанной окружностью (O;R).
<BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ. И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В.
Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).
треугольник АВС - прямоугольный,
АВ - гипотенуза,
АС < ВС,
АС = 10 см,
Р - центр вписанной окружности,
K, L, M - точки касания сторон АС, ВС, АВ - соответственно,
РМ = 3 см,
О - центр описанной окружности.
Решение:
1.
Рассмотрим LCKP - вкадрат по свойству радиуса, проведенного в точку касания, имеем
КС = LC = 3 см,
АК = АС - КС = 10 - 3 = 7 см.
2.
По свойству касательных имеем
КА = МА = 7 см, МВ = LB = х, LC = KC = 3 см,
тогда по теореме Пифагора для прямоугольного треугольника АВС плучаем
АС^2 + BC^2 = AB^2
10^2 + (x + 3)^2 = (x + 7)^2
100 + x^2 + 6x + 9 = x^2 + 14x + 49
8x = 60
x = 15/2 см,
АВ = 15/2 + 7 = 29/2 см.
3.
Зная, что центр окружности, описанной около прямоугольного треугольника,
совпадает с серединой его гипотенузы, находим
АО = АВ/2 = 0,5*29/2 = 29/4 см.
ответ:
29/4 см.