Точка А с координатами (24; 36; 0) принадлежит Горизонтальной плоскости проекций Фронтальной плоскости проекций Профильной плоскости проекций Оси X Оси Y Оси Z
Сумма углов любого треугольника равна 180° 1) 180° - (48° + 48°) = 84° В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90° В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95° В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный. ответ: А - 2; Б - 1; В - 3
1) 180° - (48° + 48°) = 84°
В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90°
В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95°
В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный.
ответ: А - 2; Б - 1; В - 3
АВС - основание пирамиды
S - вершина
О - середина основания
SO - высота = 9√3
АВ=ВС=АС= 9√3
SA - ?
Найдём длину АО:
АО = 1/2 * АP
где АР - высота треугольника АВС
Найдем площадь треугольника:
S = a²√3/4 = (9√3)²*√3/4 = 243√3 /4 см²
Также площадь треугольника находится через высоту:
S = 1/2 * a * h
Найдём отсюда высоту:
243√3 /4 = 1/2 * 9√3 * h
1/2 * h = 81/4
h = 81/2 см
AO = 1/2 * 81/2 = 81/4 см
По теореме Пифагора:
SA² = AO²+SO²
SA² = (81/4)² + (9√3)²
SA² = 6561/16 + 243
SA² = 10449/16
SA = √10449/4
ответ: √10449/4 см