Рассмотрим произвольный треугольник АВС и докажем, что
∠A+∠B+∠C= 180°.
Проведём через вершину В прямую а, параллельную стороне АС (рис. 125, а). Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому
∠4 = ∠1, ∠5 = ∠3. (1)
Очевидно, сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной В, т. е. ∠4 + ∠2 + ∠5 = 180°. Отсюда, учитывая равенства (1), получаем: ∠1 + ∠2 + ∠3 = 180°, или ∠A + ∠B + ∠C = 180°. Теорема доказана.
Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Обратимся к рисунку 125, б, на котором угол 4 — внешний угол, смежный с углом 3 данного треугольника. Так как ∠4 + ∠3 = 180°, а по теореме о сумме углов треугольника (∠1+ ∠2) + ∠3 = 180°, то ∠4 = ∠1 + ∠2, что и требовалось доказать.
Сторона правильного шестиугольника, вписанного в окружность с радиусом 1, тоже равна 1.
Объяснение:
Так как шестиугольник можно разбить на 6 треугольников, у которых сторонами будут стороны самого шестиугольника и прямые, проведенные от центра шестиугольника к каждому из его углов. Эти маленькие треугольники будут равносторонними. Так как углы при вершине центра шестиугольника будут равны 360°:6=60°. А сам треугольник, считая основанием сторону шестиугольника, будет равнобедренным, так как сторонами будут радиусы описанной окружности. Так как в треугольнике сумма углов 180°, то на эти углы приходится 180°-60°=120°. Так как углы при основании равны, то 120°:2=60° - на каждый из оставшихся углов. Значит каждый из углов равен 60°. Это возможно в равностороннем треугольнике. Значит радиус равен стороне шестиугольника.
Рассмотрим произвольный треугольник АВС и докажем, что
∠A+∠B+∠C= 180°.
Проведём через вершину В прямую а, параллельную стороне АС (рис. 125, а). Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому
∠4 = ∠1, ∠5 = ∠3. (1)
Очевидно, сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной В, т. е. ∠4 + ∠2 + ∠5 = 180°. Отсюда, учитывая равенства (1), получаем: ∠1 + ∠2 + ∠3 = 180°, или ∠A + ∠B + ∠C = 180°. Теорема доказана.
Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Обратимся к рисунку 125, б, на котором угол 4 — внешний угол, смежный с углом 3 данного треугольника. Так как ∠4 + ∠3 = 180°, а по теореме о сумме углов треугольника (∠1+ ∠2) + ∠3 = 180°, то ∠4 = ∠1 + ∠2, что и требовалось доказать.
Объяснение:
надеюсь удачи
Сторона правильного шестиугольника, вписанного в окружность с радиусом 1, тоже равна 1.
Объяснение:
Так как шестиугольник можно разбить на 6 треугольников, у которых сторонами будут стороны самого шестиугольника и прямые, проведенные от центра шестиугольника к каждому из его углов. Эти маленькие треугольники будут равносторонними. Так как углы при вершине центра шестиугольника будут равны 360°:6=60°. А сам треугольник, считая основанием сторону шестиугольника, будет равнобедренным, так как сторонами будут радиусы описанной окружности. Так как в треугольнике сумма углов 180°, то на эти углы приходится 180°-60°=120°. Так как углы при основании равны, то 120°:2=60° - на каждый из оставшихся углов. Значит каждый из углов равен 60°. Это возможно в равностороннем треугольнике. Значит радиус равен стороне шестиугольника.