Точка C ділить діаметр кола AB на відрізки AC = 10 см і CB = 8 см. Відрізок CD — перпендикуляр до AB. Визначте розміщення точки D відносно даного кола, якщо CD = 9 см.
А) BADC - пирамида 1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||) ч.т.д б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC А отношение площадей подобных ▲ равно квадрату коэффициенту подобия. S1:S2=k^2 S2=S1:k^2 S2=48:2^2=12см^2 ответ:12 см^2
Заданный двугранный угол при основании в 60 градусов это угол между апофемой (высотой боковой грани) и проекцией апофемы на плоскость основания, равной по величине стороне а квадратного основания. Тогда угол между высотой и апофемой равен 90-60=30градусов. Высота H, апофема А и проекция апофемы на плоскость основания, равная половине стороны, т.е. 0,5а, образуют прямоугольный треугольник с гипотенузой, равной апофеме. Найдём половину стороны основания: 0,5а = Н·tg 30° = 4·√3·√3/3 = 4. Тогда а = 8. Найдём апофему А = Н:cos30° = 4·√3/0.5√3 = 8 Найдём площадь основания пирамиды: Sосн = а² = (8)² = 64 Боковая поверхность пирамиды состоит из 4=х одинаковых треугольников, основанием каждого тр-ка служит сторона квадрата а, а высотой - апофема А Sбок = 4·0,5·а·А = 2·8·8 = 128 S полн = Sбок + Sосн = 128 + 64 = 192
1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC
Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||)
ч.т.д
б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC
А отношение площадей подобных ▲ равно квадрату коэффициенту подобия.
S1:S2=k^2
S2=S1:k^2
S2=48:2^2=12см^2
ответ:12 см^2
0,5а = Н·tg 30° = 4·√3·√3/3 = 4.
Тогда а = 8.
Найдём апофему
А = Н:cos30° = 4·√3/0.5√3 = 8
Найдём площадь основания пирамиды:
Sосн = а² = (8)² = 64
Боковая поверхность пирамиды состоит из 4=х одинаковых треугольников, основанием каждого тр-ка служит сторона квадрата а, а высотой - апофема А
Sбок = 4·0,5·а·А = 2·8·8 = 128
S полн = Sбок + Sосн = 128 + 64 = 192