Объяснение:
1. Теорема: сумма угловΔ-ка = 180°. Из этого следует:
∠А = 180° - 30° -105° = 45° → ∠А = 45°
2. Из ∠С построим высоту СО:
СО⊥ АВ.
Рассмотрим ΔАОС.
∠АОС = 90° по построению,
∠А = 45°, значит, ∠АСО =90°- 45° = 45°.
Следовательно, ΔАОС - равнобедренный и
АО=СО.
По т. Пифагора:
АС² = АО² + СО² → АС² = 2СО² или
4² = 2*СО²
СО² = 16/2 = 8 → СО = √8 = 2√2.
СО = АО = 2√2
3. Рассмотрим ΔСОВ.
∠СОВ = 90° по построению
∠В = 30°
СО = 2√2 - катет, лежащий против угла в 30°.
Теорема: В прямоугольном Δ - ке против угла в 30° лежит катет, равный половине гипотенузы:
СВ = 2СО= 2 * 2√2 = 4√2
ОВ² =СВ² - СО² = (4√2)² - (2√2)² = 32 - 8 = 24
ОВ = √24 = 2√6
АВ = АО + ОВ = 2√2 +2√6
∠А = 45°
СВ = 4√2 ≈ 4* 1,41 = 5,64(см0
АВ = 2√2 +2√6 = 2* 1,41 +2*2,45 = 2,82 + 4,9 = 7,72 (см)
Расстояние от точки Т до прямой RC равно 3.
∆RTC- прямоугольный равнобедренный треугольник.
<RTC=90°, так как опирается на диаметр RC.
<RCT=45°, по условию.
В прямоугольном треугольнике сумма острых углов равна 90°
<ТRC=90°-<RCT=90°-45°=45°
Углы при основании равны треугольник равнобедренный.
RT=TC=3√2.
По теореме Пифагора найдем гипотенузу
RC=√(RT²+TC²)=√((3√2)²+(3√2)²)=√(18+18)=
=√36=6
Так как ∆RTC- равнобедренный, то ТО- высота, медиана и биссектрисса.
Медиана равна половине гипотенузы.
ТО=1/2*RC=1/2*6=3.
Объяснение:
1. Теорема: сумма угловΔ-ка = 180°. Из этого следует:
∠А = 180° - 30° -105° = 45° → ∠А = 45°
2. Из ∠С построим высоту СО:
СО⊥ АВ.
Рассмотрим ΔАОС.
∠АОС = 90° по построению,
∠А = 45°, значит, ∠АСО =90°- 45° = 45°.
Следовательно, ΔАОС - равнобедренный и
АО=СО.
По т. Пифагора:
АС² = АО² + СО² → АС² = 2СО² или
4² = 2*СО²
СО² = 16/2 = 8 → СО = √8 = 2√2.
СО = АО = 2√2
3. Рассмотрим ΔСОВ.
∠СОВ = 90° по построению
∠В = 30°
СО = 2√2 - катет, лежащий против угла в 30°.
Теорема: В прямоугольном Δ - ке против угла в 30° лежит катет, равный половине гипотенузы:
СВ = 2СО= 2 * 2√2 = 4√2
ОВ² =СВ² - СО² = (4√2)² - (2√2)² = 32 - 8 = 24
ОВ = √24 = 2√6
АВ = АО + ОВ = 2√2 +2√6
∠А = 45°
СВ = 4√2 ≈ 4* 1,41 = 5,64(см0
АВ = 2√2 +2√6 = 2* 1,41 +2*2,45 = 2,82 + 4,9 = 7,72 (см)
Расстояние от точки Т до прямой RC равно 3.
Объяснение:
∆RTC- прямоугольный равнобедренный треугольник.
<RTC=90°, так как опирается на диаметр RC.
<RCT=45°, по условию.
В прямоугольном треугольнике сумма острых углов равна 90°
<ТRC=90°-<RCT=90°-45°=45°
Углы при основании равны треугольник равнобедренный.
RT=TC=3√2.
По теореме Пифагора найдем гипотенузу
RC=√(RT²+TC²)=√((3√2)²+(3√2)²)=√(18+18)=
=√36=6
Так как ∆RTC- равнобедренный, то ТО- высота, медиана и биссектрисса.
Медиана равна половине гипотенузы.
ТО=1/2*RC=1/2*6=3.