1) Площадь параллелограмма равна полусумме его оснований —
2) Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета —
3) Площадь квадрата равна квадрату его высоты —
4) Высота трапеции равна её площади, делённой на среднюю линию —
Решение
1) "Площадь параллелограмма равна полусумме его оснований" — неправильно; площадь параллелограмма равна произведению одной из его сторон на высоту, проведённую к этой стороне.
2) "Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета" — в данном случае приведена формула вычисления одного из катетов; если принять один из катетов за основание, а второй за высоту, то, в частности, с этим утверждением можно было бы согласиться, но ведь кроме катетов в треугольнике есть ещё и гипотенуза, высота к которой проводится из вершины прямого угла, и в отношении высоты, проведенной к гипотенузе, такая формула неприменима; поэтому ответ - неправильно.
3) "Площадь квадрата равна квадрату его высоты" — площадь квадрата равна квадрату его стороны, а понятия "высоты квадрата" нет; ответ - неправильно.
4) "Высота трапеции равна её площади, делённой на среднюю линию" - да, так можно утверждать; если площадь трапеции равна произведению средней линии на высоту, то из этого следует, что делением площади на среднюю линию мы получаем высоту трапеции; ответ - правильно.
Ответ: 6 см
Объяснение: Угол между плоскостями — это угол между перпендикулярами, проведенными в этих плоскостях к одной точке на линии их пересечения.
Линия пересечения - прямая СА, перпендикуляры к ней НВ и НК. Угол ВНК=30°(дано)
ВН - высота ∆ АВС к стороне АС. Площадь ∆ АВС по формуле Герона равна 24 см².
Из формулы площади треугольника высота ВН=2Ѕ:АС=48:4=12 (см).
Расстояние от точки до плоскости измеряется длиной перпендикуляра, опущенного из той точки на плоскость.
Из прямоугольного ∆ ВКН искомое расстояние ВК=ВН•sin30°=12•1/2=6 см
См. Объяснение
Объяснение:
Задание
Прочти высказывания и оцени их верность.
1) Площадь параллелограмма равна полусумме его оснований —
2) Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета —
3) Площадь квадрата равна квадрату его высоты —
4) Высота трапеции равна её площади, делённой на среднюю линию —
Решение
1) "Площадь параллелограмма равна полусумме его оснований" — неправильно; площадь параллелограмма равна произведению одной из его сторон на высоту, проведённую к этой стороне.
2) "Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета" — в данном случае приведена формула вычисления одного из катетов; если принять один из катетов за основание, а второй за высоту, то, в частности, с этим утверждением можно было бы согласиться, но ведь кроме катетов в треугольнике есть ещё и гипотенуза, высота к которой проводится из вершины прямого угла, и в отношении высоты, проведенной к гипотенузе, такая формула неприменима; поэтому ответ - неправильно.
3) "Площадь квадрата равна квадрату его высоты" — площадь квадрата равна квадрату его стороны, а понятия "высоты квадрата" нет; ответ - неправильно.
4) "Высота трапеции равна её площади, делённой на среднюю линию" - да, так можно утверждать; если площадь трапеции равна произведению средней линии на высоту, то из этого следует, что делением площади на среднюю линию мы получаем высоту трапеции; ответ - правильно.