А) этот вопрос совсем простенький - достаточно доказать, что AM = AS; тогда высота AT треугольника AMS одновременно будет и медианой. Радиус описанной окружности вокруг правильного треугольника в основании AH, равен стороне, деленной на √3, то есть AH = 4; а высота - в полтора раза больше, то есть AM = 6; AS^2 = AH^2 + SH^2 = 4^2 + 2^2*5 = 36; AS = 6 = AM; доказано. б) тут посложнее, но не на много. Дело в том, что прямые эти взаимно перпендикулярны (AT - высота пирамиды). Поэтому надо найти расстояние от точки T до SB. Из пункта а) следует, что это расстояние в 2 раза меньше, чем от M до SB, то есть половина высоты (к гипотенузе) прямоугольного треугольника MSB c катетом BM = 2√3 и гипотенузой 6; SM^2 = 6^2 - (2√3)^2 = 24; SM = 2√6; высота MSB равна (2√3)*(2√6)/6 = 2√2; а нужное расстояние в 2 раза меньше, то есть просто √2;
1) 1 случай: если внешний угол при основании, тогда смежный с ним 180-116=64, второй угол при основании тоже = 64, а угол при вершине=180-64-64=52 2 случай: если внешний угол при вершине, тогда смежный с ним=64, а сумма углов при основании=116. Тк углы при основании равнобедренного треугольника равны, то каждый будет равен 116:2=58. 2) 1 случай: аналогично. Углы при основании=180-100=80, угол при вершине=180-80-80=20 2 случай: угол при вершине=80. Сумма углов при основании=100. Каждый угол при основании =100:2=50
Радиус описанной окружности вокруг правильного треугольника в основании AH, равен стороне, деленной на √3, то есть AH = 4; а высота - в полтора раза больше, то есть AM = 6;
AS^2 = AH^2 + SH^2 = 4^2 + 2^2*5 = 36; AS = 6 = AM; доказано.
б) тут посложнее, но не на много. Дело в том, что прямые эти взаимно перпендикулярны (AT - высота пирамиды). Поэтому надо найти расстояние от точки T до SB. Из пункта а) следует, что это расстояние в 2 раза меньше, чем от M до SB, то есть половина высоты (к гипотенузе) прямоугольного треугольника MSB c катетом BM = 2√3 и гипотенузой 6;
SM^2 = 6^2 - (2√3)^2 = 24; SM = 2√6;
высота MSB равна (2√3)*(2√6)/6 = 2√2; а нужное расстояние в 2 раза меньше, то есть просто √2;
2 случай: если внешний угол при вершине, тогда смежный с ним=64, а сумма углов при основании=116. Тк углы при основании равнобедренного треугольника равны, то каждый будет равен 116:2=58.
2) 1 случай: аналогично. Углы при основании=180-100=80, угол при вершине=180-80-80=20
2 случай: угол при вершине=80. Сумма углов при основании=100. Каждый угол при основании =100:2=50