Точка D равноудалена от вершин прямоугольного треугольника ABC (угол acb равен 90 градусов). Найдите угол между плоскостями ABC и ACD если AC = BC = 2 см, а точка D удалена от плоскости ABC на корень из 3 см.
Рассмотрим треугольник АВН. Это равнобедренный треугольник, так как АН=ВН. Значит в нем высота является и медианой. Разделим отрезок АВ пополам и отметим точку К. Соединим точки Н и К. Отрезок НК перпендикулярен прямой АВ.
Проведем из точки С прямую, параллельную прямой НК и отметим точку Р пересечения этой прямой со стороной АВ. СР - высота треугольника АВС из вершины С к прямой АВ.
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Пересечение 6 -2.
Объяснение:
В треугольнике АВС ВН - высота к стороне АС.
Рассмотрим треугольник АВН. Это равнобедренный треугольник, так как АН=ВН. Значит в нем высота является и медианой. Разделим отрезок АВ пополам и отметим точку К. Соединим точки Н и К. Отрезок НК перпендикулярен прямой АВ.
Проведем из точки С прямую, параллельную прямой НК и отметим точку Р пересечения этой прямой со стороной АВ. СР - высота треугольника АВС из вершины С к прямой АВ.
Пересечение высот - точка О, лежит на пересечении
столбца 6 и строки 2.
значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол)
пусть прямоугольник будет АВСД, точка пересечения диагоналей О,
тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой
полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.
По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см.
У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см
Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.
По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5
площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5