Точка D равноудалена от всех сторон треугольника. Под каким углом от точки D видна короткая сторона треугольника, если углы треугольника равны 21°, 42° и 117°? Короткая сторона треугольника от точки D видна под углом °.
Пусть длина меньшей стороны x см, тогда длина второй стороны 2x см, а три другие имеют длину (x+20) см. Составим уравнение по условию задачи, периметр будет равен x+2x+3*(x+20) = 200 см.
Сумма углов выпуклого n-угольника и одного из его внешних углов равен 990°. Найдите n.
Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. Сумма одного внутреннего и внешнего угла при нем равна развернутому углу, т.е. 180°. Тогда на долю остальных n' = (n-1) углов данного многоугольника приходится 990°-180°=810°. Найдем количество n' остальных углов. 810°:n'=180°(n'-2):n';, откуда n'=6. А с углом. который мы вычли, число углов (и, естественно, сторон) данного многоугольника равно 7.
Или: Формула суммы углов выпуклого n-угольника 180°(n-2). Сумма всех внешних углов многоугольника 360°. Предположим, что этот многоугольник правильный. Тогда величина внешнего угла 360°:n. Составим уравнение: 180°(n-2)+360°/n=990°. Сократим для удобства все члены уравнения на 90 и умножим их на n , после чего соберем все его члены по одну сторону и получим квадратное уравнение 2n²-15n+4=0. Корни этого уравнения ≈ 7,54 и ≈0,25. Число сторон многоугольника не бывает дробным. Пусть n=7. Тогда сумма внутренних углов семиугольника 180°•5=900°, а добавленный к ней внешний угол 990°-900°=90°. Смежный с ним внутренний может быть равен только 90°. Данный многоугольник не является правильным, его углы могут иметь разную величину, но их сумма будет 900°. ( Например, 6 углов будут по (900°-90°):6=135°, а седьмой равен 90°, а их сумма 6•135°+90°=900°). ответ: n=7
Пусть длина меньшей стороны x см, тогда длина второй стороны 2x см, а три другие имеют длину (x+20) см. Составим уравнение по условию задачи, периметр будет равен x+2x+3*(x+20) = 200 см.
Решаем уравнение:
x+2x+3*(x+20) = 200
3x+3*(x+20) = 200
3*(x+x+20) = 200,
2x+20 = 200/3,
2x = (200/3) - 20,
x = (1/2)*( (200/3) - 20) = (100/3) - 10 = (100 - 30)/3 = 70/3 = (69+1)/3 =
= 23+(1/3) см. Это длина меньшей стороны,
длина большей стороны = 2x = 2*(23+(1/3)) = 46+(2/3) см,
а длины остальных трех сторон (каждой из них) = x+20 = 20+23+(1/3) =
= 43 + (1/3) см.
Сумма углов выпуклого n-угольника и одного из его внешних углов равен 990°. Найдите n.
Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. Сумма одного внутреннего и внешнего угла при нем равна развернутому углу, т.е. 180°. Тогда на долю остальных n' = (n-1) углов данного многоугольника приходится 990°-180°=810°. Найдем количество n' остальных углов. 810°:n'=180°(n'-2):n';, откуда n'=6. А с углом. который мы вычли, число углов (и, естественно, сторон) данного многоугольника равно 7.
Или: Формула суммы углов выпуклого n-угольника 180°(n-2). Сумма всех внешних углов многоугольника 360°. Предположим, что этот многоугольник правильный. Тогда величина внешнего угла 360°:n. Составим уравнение: 180°(n-2)+360°/n=990°. Сократим для удобства все члены уравнения на 90 и умножим их на n , после чего соберем все его члены по одну сторону и получим квадратное уравнение 2n²-15n+4=0. Корни этого уравнения ≈ 7,54 и ≈0,25. Число сторон многоугольника не бывает дробным. Пусть n=7. Тогда сумма внутренних углов семиугольника 180°•5=900°, а добавленный к ней внешний угол 990°-900°=90°. Смежный с ним внутренний может быть равен только 90°. Данный многоугольник не является правильным, его углы могут иметь разную величину, но их сумма будет 900°. ( Например, 6 углов будут по (900°-90°):6=135°, а седьмой равен 90°, а их сумма 6•135°+90°=900°). ответ: n=7