точка дотику кола вписаного в рівнобедрений трикутник поділяє його бічну сторону на відрізки, що дорівнюють 6см і 5см, рахуючи від основи. Знайдіть периметр трикутника.
Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
Нарисуем треугольник АВС.
Проведем в нем высоты АК и СМ.
По условию задачи они пересекаются под углом 110º.
1) Рассмотрим треугольник АМС.
Угол АМС =90º
Сумма острых углов в нем 90º, ∠А=70º по условию, следовательно,
∠ МСА=90º-70º=20º.
2)Рассмотрим треугольник АDС.
Так как ∠МСА=20 градусов,
то ∠DAC=180-110-20=50º.
3)Так как ∠ А=70º, а
∠КАС=50º,то ∠ВАК=70-50-20º
4)В прямоугольном треугольнике АВК ∠АКВ прямой, ∠ВАК=20º, следовательно, ∠В=90-20=70º
5) В треугольнике АВС ∠С=180-70-70=40º
ответ: Угол С=40º
Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
Таким образом, CD=2KD=2 умножить на 24=48.
ответ: 48.