Точка дотику вписаното в рівнобедрений трикутник кола ді- лить його бічну сторону на відрізки, 1) різниця яких дорівнює 1 см (менший відрізок, прилеглий до кута при основі). Знайдіть сторони цього трикутника, якщо його периметр дорівнює 32 см. 2) пропорційні числам 3 і 2 (рахуючи від вершини, протилеж ній основі). Знайдіть сторони цього трикутника, якщо його периметр дорівнює 1,12 м.
Відповідь:
108 см
Пояснення:
Дано:АВСD- прямокутна трапеція, ВС=24см, AD=34 см, АС- бісектриса ∠А
Знайти : Р-?
Рішення
Так як АD║ВС( основи трапеції ), то ∠DАС=∠АСВ, як внутрішні різносторонні кути при січній АС.
А так як за умовою задачі ∠ВАС=∠DАС, то Δ АВ С- рівнобедрений з основою АС( кути при основі рівнобедреного Δ рівні- властивість), отже АВ=ВС=24см.
Опустимо висоту СН⊥АD. Так як ∠А=∠В=90°, відповідно АВ⊥ АD, то АВ║СН, чотирикутник АВСН- квадрат зі стороною 24см.
Отже НD= АD-АН=34-24=10(см)
Розглянемо ΔСНD, де ∠Н=90°, НD=10см, СН=24см
За теоремою Піфагора
СD²=10²+24²=100+576=676(см²)
СD=√676=26(см)
Р= 24+24+26+34=108 (см)
Если продлить боковые стороны до пересечения, то получится прямоугольный треугольник.
Если есть прямоугольная система координат XOY (внимание - буквой O обозначено начало кооринат, а не центр окружности! в применении к задаче - это точка пересечения AB и CD) и окружность, касающаяся оси OY и пресекающая ось OX в 2 точках, то её уравнение в самом общем виде (x - R)^2 + (y - a)^2 = R^2; точка (R, a) - центр.
=> x^2 - 2xR + (y-a)^2 = 0; при y = 0; x^2 - 2xR + a^2 = 0;
корни R - √(R^2 - a^2) и R + √(R^2 - a^2); пусть эти точки совпадают с точками A и B в условии, тогда при AB = 11
2√(R^2 - a^2) = 11;
Еще неиспользованное условие - AD/DC = 3/2; из того, что треугольники OBC и OAD подобны (я напоминаю, что буквой O я обозначил начало координат, а не центр окружности), ясно, что OA/OB = 3/2; или
(R + √(R^2 - a^2))/(R - √(R^2 - a^2)) = 3/2;
ну вот, по смыслу задача решилась, и ответ гораздо ближе, чем кажется :) потому что
простая подстановка дает
(R + 11/2)/(R - 11/2) = 3/2; => R = 55/2;