Дано: ABCD — параллелограмм. (AB l l CD, и AD l l BC; AD=BC, AB=CD). Биссектрисы ∠A и ∠B пересекаются в т. F. F ∈ CD. Док-ть: F — середина CD. Решение: 1) Так как AF и BF явл. биссектрисами ∠A и ∠B, ∠BAF=∠FAB и ∠CBF=∠ABF. ∠BAF=∠AFD (как накрест лежащие углы при AB l l CD и секущей AF). Значит, ∠FAD=∠AFD. Из этого следует, что ΔADF — равнобедренный с осн. AF по признаку (если два угла в треугольнике равны, то он равнобедренный). Значит, в нем равны боковые стороны (AD=DF). 2) По условию, ABCD — параллелограмм, AD=BC. Аналогично можно док-ть, что ∠ABF=∠BCF (как накрест лежащие углы при AB l l CD и секущей BF). Значит, ∠FBC=∠BFC. Из этого следует, что ΔBCF — равнобедренный c осн. BF по признаку (если два угла в треугольнике равны, то он равнобедренный). Значит, в нем равны боковые стороны (BC=CF). 3) Из доказанного выше следует, что CF=FD, значит, F — середина стороны CD, что и требовалось доказать.
задача 1
1) исходя из условия, что относятся как 6/6/7 (как длина/ширина/высота), то AB=BC=CD=AD=6, ABCD - квадрат.
2) диагональ нижней и верхней грани, а миенно квадрата, равна "а" корень из 2, где "а" - сторона квадрата. Следовательно AC=6 корней из 2
3) С1С=7
BC=6
из т. Пифагора найдем C1D= корень из85
ответ: AB1=B1C=C1D=A1D=корень из 85
B1D=BD=6корней из 2
задача 2
Скрещивающиеся прямые. Если две прямые не лежат в одной плоскости не параллельны одна другой и не пересекаются, они называются скрещивающимися.
наименьшее ребро 2, а именно СС1=DD1=AA1=BB1=2
скрещивающиеся прямые тут - AD и CD , например, а расстояние и естьAD = 4
задача3
середіна AA1 - L, если не ошибаюсь сечение есть треугольник B1CD
F ∈ CD.
Док-ть: F — середина CD.
Решение:
1) Так как AF и BF явл. биссектрисами ∠A и ∠B, ∠BAF=∠FAB и ∠CBF=∠ABF.
∠BAF=∠AFD (как накрест лежащие углы при AB l l CD и секущей AF).
Значит, ∠FAD=∠AFD. Из этого следует, что ΔADF — равнобедренный с осн. AF по признаку (если два угла в треугольнике равны, то он равнобедренный). Значит, в нем равны боковые стороны (AD=DF).
2) По условию, ABCD — параллелограмм, AD=BC. Аналогично можно док-ть, что ∠ABF=∠BCF (как накрест лежащие углы при AB l l CD и секущей BF). Значит, ∠FBC=∠BFC. Из этого следует, что ΔBCF — равнобедренный c осн. BF по признаку (если два угла в треугольнике равны, то он равнобедренный). Значит, в нем равны боковые стороны (BC=CF).
3) Из доказанного выше следует, что CF=FD, значит, F — середина стороны CD, что и требовалось доказать.