Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
Перефразируем : вершина M пирамиды равноудалена от всех сторон основания (ромба ABCD ), высота MO=2 . Пусть AC =16 см ; BD =12 см. Найти боковые ребра . Условие подсказывает, что высота проходит через центр O окружности вписанной в основании (ромб). Эта точка пересечения диагоналей AC и BD. AO=CO =AC/2 =16 см/2 =8 см ; BO =CO =BD/2 =6 см. Из ΔAOM по теореме Пифагора: MA = √(AO² +MO²) =√(8² +2²) =√68 =√4*17 =2√17 (см). MC =MA = 2√17 см. Аналогично найдем MB =MD =√(BO² +MO²) =√(6² +2²) =√40=√4*√10=2√10 ((см).
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD.
По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD .
Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² =
(1/2)*√ ( 30² +40)² =(1/2)*50=25.
S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒
600 =25*AH ⇒AH =24.
Окончательно :
KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
ответ : 26.
вершина M пирамиды равноудалена от всех сторон основания (ромба ABCD ), высота MO=2 . Пусть AC =16 см ; BD =12 см. Найти боковые ребра . Условие подсказывает, что
высота проходит через центр O окружности вписанной в основании (ромб). Эта точка пересечения диагоналей AC и BD. AO=CO =AC/2 =16 см/2 =8 см ; BO =CO =BD/2 =6 см.
Из ΔAOM по теореме Пифагора: MA = √(AO² +MO²) =√(8² +2²) =√68 =√4*17 =2√17 (см).
MC =MA = 2√17 см.
Аналогично найдем MB =MD =√(BO² +MO²) =√(6² +2²) =√40=√4*√10=2√10 ((см).
ответ : 2√17 см ; 2√10 см .