Точка k-середина строны bc параллеограмма abcd,точка m -середина строны bc.докажите что диогонали четырёхугольника bkdm точкой их пересечения днлятся пополам
В данной пирамиде в основании лежит правильный шестиугольник. В нём АВ║СF, значит угол между СО и плоскостью SBC такой же, как и между стороной АВ и той же плоскостью. SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК. Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC. Тр-ник ВОС равносторонний. СО=ВС=1. ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2. В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75. В тр-ке SMO cosM=OM/SM=√3/(2√3.75). sin²M=1-cos²M=1-3/15=12/15. В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5. В тр-ке СКО sin(КСО)=КО/СО=√15/5. ∠КСО=arcsin√15/5≈50.8° - это ответ.
Властивість 1. Висота прямокутного трикутника рівна проекції катетів на гіпотенузу. Мовою формул, твердження еквівалентне запису СD*СD = АD ∙ DВ
Властивість 2. Катет прямокутного трикутника є середнім пропорційним гіпотенузі і проекції цього катета на гіпотенузу AC*AC=AB*AD; BC*BC=AB*BD. Добре розберіться, за що відповідають формули –наведені далі задачі будуть для Вас більш зрозумілі.
Задача 1. Висота прямокутного трикутника ділить гіпотенузу на два відрізки 4 см і 9 см. Знайдіть висоту трикутника, проведену до гіпотенузи та його площу.
Розв'язання: Виконаємо побудову трикутника за даними
За 1 властивістю висота рівна
Гіпотенузу знаходимо через суму відрізків AB=AD+BD=4+9=13 (см). Площа трикутника рівна половині добутку основи на висоту. Виконуємо обчислення
Відповідь: Площа рівна 39 сантиметрів квадратних.
Задача 2. Площа прямокутного трикутника рівна 6 метрів квадратних. Знайти проекції катетів на гіпотенузу, якщо відомо, що один катет рівний 4 м.
Через відому площу обчислимо другий катет трикутника
За теоремою Піфагора знаходимо гіпотенузу
Через пропорційні відрізки знаходимо проекції
В такий самий б знаходимо проекцію другого катета
Легко переконатися, що сума проекцій рівна гіпотенузі трикутника
Відповідь: проекції катетів рівні 9/5 см та 16/5 см.
Задача 3. Один катет прямокутного трикутника рівний 8 см, а проекція другого катета на гіпотенузу – 3,6 см. Знайдіть другий катет та гіпотенузу трикутника.
Розв'язання: Зобразимо трикутник із вхідними даними.
Позначимо AD=x. Згідно другої властивості маємо
Розкриваємо дужки
Квадратне рівняння обчислюємо через дискримінант
Корені рівняння рівні
Корінь x=-10 не відповідає фізичній суті задачі. Знаючи другу проекцію AD=6,4 см гіпотенузу знаходимо через суму проекцій AB=3,6+6,4=10 (см.) За теоремою Піфагора обчислюємо другий катет
Відповідь: катетів рівний 6 см, гіпотенуза – 10 см.
Подібних задач на висоту, гіпотенузу, бісектрису трикутника в ін
SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК.
Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC.
Тр-ник ВОС равносторонний. СО=ВС=1.
ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2.
В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75.
В тр-ке SMO cosM=OM/SM=√3/(2√3.75).
sin²M=1-cos²M=1-3/15=12/15.
В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5.
В тр-ке СКО sin(КСО)=КО/СО=√15/5.
∠КСО=arcsin√15/5≈50.8° - это ответ.
Властивість 1. Висота прямокутного трикутника рівна проекції катетів на гіпотенузу. Мовою формул, твердження еквівалентне запису
СD*СD = АD ∙ DВ
Властивість 2. Катет прямокутного трикутника є середнім пропорційним гіпотенузі і проекції цього катета на гіпотенузу
AC*AC=AB*AD;
BC*BC=AB*BD.
Добре розберіться, за що відповідають формули –наведені далі задачі будуть для Вас більш зрозумілі.
Задача 1. Висота прямокутного трикутника ділить гіпотенузу на два відрізки 4 см і 9 см. Знайдіть висоту трикутника, проведену до гіпотенузи та його площу.
Розв'язання: Виконаємо побудову трикутника за даними
За 1 властивістю висота рівна
Гіпотенузу знаходимо через суму відрізків
AB=AD+BD=4+9=13 (см).
Площа трикутника рівна половині добутку основи на висоту. Виконуємо обчислення
Відповідь: Площа рівна 39 сантиметрів квадратних.
Задача 2. Площа прямокутного трикутника рівна 6 метрів квадратних. Знайти проекції катетів на гіпотенузу, якщо відомо, що один катет рівний 4 м.
Розв'язання: Виконаємо допоміжну побудову трикутника
Через відому площу обчислимо другий катет трикутника
За теоремою Піфагора знаходимо гіпотенузу
Через пропорційні відрізки знаходимо проекції
В такий самий б знаходимо проекцію другого катета
Легко переконатися, що сума проекцій рівна гіпотенузі трикутника
Відповідь: проекції катетів рівні 9/5 см та 16/5 см.
Задача 3. Один катет прямокутного трикутника рівний 8 см, а проекція другого катета на гіпотенузу – 3,6 см. Знайдіть другий катет та гіпотенузу трикутника.
Розв'язання: Зобразимо трикутник із вхідними даними.
Позначимо AD=x. Згідно другої властивості маємо
Подібних задач на висоту, гіпотенузу, бісектрису трикутника в інРозкриваємо дужки
Квадратне рівняння обчислюємо через дискримінант
Корені рівняння рівні
Корінь x=-10 не відповідає фізичній суті задачі.
Знаючи другу проекцію AD=6,4 см гіпотенузу знаходимо через суму проекцій
AB=3,6+6,4=10 (см.)
За теоремою Піфагора обчислюємо другий катет
Відповідь: катетів рівний 6 см, гіпотенуза – 10 см.