Точка лежит на расстояние 9 см от площади альфа. кривые ав и ас образуют с площадью альфа ∠45° и ∠60°, а угол между проекцией кривых 120°. найти расстояние между точками в и с. ( если кто-то всё понял, то буду признательна за в решение этой ; ) )
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
1) У равнобедренного треугольника есть ось симметрии. 3) Площадь трапеции равна произведению средней линии на высоту. 2) Любой квадрат можно вписать в окружность. 3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна 180°,то эти прямые параллельны. 1) Вокруг любого треугольника можно описать окружность. 3) Если в ромбе один из углов равен 90°, то такой ромб -.квадрат. 1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Существует параллелограмм, который не является прямоугольником. 3) Сумма углов тупоугольного треугольника равна 180°.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
симметрии.
3) Площадь трапеции равна произведению средней
линии на высоту.
2) Любой квадрат можно вписать в окружность.
3) Сумма квадратов диагоналей прямоугольника
равна сумме квадратов всех его сторон.
1) Через точку, не лежащую на данной прямой,
можно провести прямую, перпендикулярную этой прямой.
2) Если при пересечении двух прямых третьей
прямой сумма внутренних односторонних углов равна 180°,то
эти прямые параллельны.
1) Вокруг любого треугольника можно описать
окружность.
3) Если в ромбе один из углов равен 90°, то
такой ромб -.квадрат.
1) Если при пересечении двух прямых третьей
прямой накрест лежащие углы равны, то прямые параллельны.
2) Существует параллелограмм, который не является
прямоугольником.
3) Сумма углов тупоугольного треугольника
равна 180°.