Обозначим (начиная с нижнего левого острого угла) по часовой стрелке ABCD. Тогда AD = 12 см и AB=8 см Высоты из угла В - на AD - BE и на CD - BF <EBF = 60 BE - высота, т. е. BE перпендикулярно AD, значит BD перпендикулярно и BC, т.к. BC параллельно AD, следовательно, < CBE - прямой и <CBF =90 - <EBF =90-60 =30 BF - высота, она перпендикулярна CD, т.е. треугольник BFC - прямоугольный, значит <BCF = 90 - <CBF = 90 -30 =60 Но <A = < C, значит <A =60 и можем найти высоту BE из треугольника AEB BE=AB* cos <A BE = 8*cos 60 = 8* корень(3)/2 = 4*корень(3) площадь параллелограмма равна произведению основания на высоту
S = AD*BE = 12*4*корень(3) = 48 * корень(3) кв. см
Меньшая диагональ - это основание равнобедренного треугольника с боковыми сторонами, равными по 4 см и углом между ними, равным 180*(8-2)/8 = 1080/8 = 135 (сумма углов выпуклого n-угольника равна 180*(n-2)) Если известны 2 стороны a,b треугольника и угол C между ними, то 3-я сторона с находится по теореме косинусов c^2 = a^2+b^2 -2a*b*cos С
Найдем основание треугольника (малую диагональ d)
d^2 = 4^2+4^2 - 2*4*4* cos 135 = 16+16 -32*(-корень(2)/2) = 32+16*корень(2) = =16*(2+корень(2)) d = корень(16*(2+корень(2))) = 4*(корень(2+корень(2))) 4 умножить на корень из два плюс корень из двух
Тогда AD = 12 см и AB=8 см
Высоты из угла В - на AD - BE и на CD - BF
<EBF = 60
BE - высота, т. е. BE перпендикулярно AD, значит BD перпендикулярно и BC, т.к.
BC параллельно AD, следовательно, < CBE - прямой и <CBF =90 - <EBF =90-60 =30
BF - высота, она перпендикулярна CD, т.е. треугольник BFC - прямоугольный, значит
<BCF = 90 - <CBF = 90 -30 =60
Но <A = < C, значит <A =60 и можем найти высоту BE из треугольника AEB
BE=AB* cos <A
BE = 8*cos 60 = 8* корень(3)/2 = 4*корень(3)
площадь параллелограмма равна произведению основания на высоту
S = AD*BE = 12*4*корень(3) = 48 * корень(3) кв. см
сорок восемь умножить на корень из трех
(сумма углов выпуклого n-угольника равна 180*(n-2))
Если известны 2 стороны a,b треугольника и угол C между ними, то 3-я сторона с находится по теореме косинусов
c^2 = a^2+b^2 -2a*b*cos С
Найдем основание треугольника (малую диагональ d)
d^2 = 4^2+4^2 - 2*4*4* cos 135 = 16+16 -32*(-корень(2)/2) = 32+16*корень(2) =
=16*(2+корень(2))
d = корень(16*(2+корень(2))) = 4*(корень(2+корень(2)))
4 умножить на корень из два плюс корень из двух