1) В прямоугольном треугольнике АВС <C=90°, <B=60° и <A=30° (90°-60°). Найти надо катет АС (против <60°). Тогда гипотенуза АВ=2*СВ (катет СВ лежит против угла 30°). По Пифагору АС=√(4СВ²-СВ²)=СВ√3. Площадь тр-ка АВС = (1/2)* АС*СВ = СВ²√3/2 = 50√3/3. Отсюда СВ²=50*2/3, а СВ = √(100/3)=10/√3. Но АС=СВ√3 (смотри выше). Мтак, искомый катет АС = (10/√3)*√3 = 10. 2) Касательные к окружности с центром 0 в точках A и B пересекаются под углом 72 градуса. найдите угол ABO. То есть касательные пересекаются под углом 72° (предположим, в точке С). Точки касания - А и В. Центр О. Значит в четырехугольнике ОАСВ угол АОВ=108°. Треугольник ОАВ равнобедренный, так как АО и ВО - радиусы. Тогда исклмый угол АВО = (180°-108°):2 = 36°
В равностороннем треугольнике ABC проведём высоту BH. Пусть сторона треугольника равна a. Рассмотрим прямоугольный треугольник ABH. В нём гипотенуза AB равна a, катет AH равен a/2, так как в равностороннем треугольнике высота BH является также медианой и делит сторону AC на две равные части. По теореме Пифагора, высота BH равна √a²-(a/2)²=√3a/2. Значит, для равностороннего треугольника верно равенство h=√3a/2, где h - высота треугольника, а - его сторона.
Пусть стороны треугольников из условия равны a и b, при этом их высоты равны h. Тогда h=√3a/2=√3b/2, откуда a=b. Значит, из равенства высот двух равносторонних треугольников следует равенство их сторон, тогда треугольники равны по трём сторонам, что и требовалось доказать.
2) Касательные к окружности с центром 0 в точках A и B пересекаются под углом 72 градуса. найдите угол ABO. То есть касательные пересекаются под углом 72° (предположим, в точке С). Точки касания - А и В. Центр О. Значит в четырехугольнике ОАСВ угол АОВ=108°. Треугольник ОАВ равнобедренный, так как АО и ВО - радиусы. Тогда исклмый угол АВО = (180°-108°):2 = 36°
Пусть стороны треугольников из условия равны a и b, при этом их высоты равны h. Тогда h=√3a/2=√3b/2, откуда a=b. Значит, из равенства высот двух равносторонних треугольников следует равенство их сторон, тогда треугольники равны по трём сторонам, что и требовалось доказать.