Точка м делит отрезок в отношении 2: 1, начиная от точки р. найдите координаты точки р если точки м и к имеют соотвсоответсвенно координаты(2; 4), (3; 7)
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Острый угол ромба диагональю делится пополам (по свойству биссектрисы равнобедренного треугольника), потому выразим тангенс половинного угла через известный тангенс угла и найдём его:
tgα = 8 = 2tg(α/2)/(1 - tg²(α/2)) ⇒ 4t² + t - 4 = 0, где t = tg(α/2).
t = 3/4, tg(α/2) = √3/2 (все отрицательные варианты убираем, так как угол острый).
Далее возможны 2 случая: известная диагональ 1) малая или 2) большая.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
12√3 или 9√3
Объяснение:
Острый угол ромба диагональю делится пополам (по свойству биссектрисы равнобедренного треугольника), потому выразим тангенс половинного угла через известный тангенс угла и найдём его:
tgα = 8 = 2tg(α/2)/(1 - tg²(α/2)) ⇒ 4t² + t - 4 = 0, где t = tg(α/2).
t = 3/4, tg(α/2) = √3/2 (все отрицательные варианты убираем, так как угол острый).
Далее возможны 2 случая: известная диагональ 1) малая или 2) большая.
1. Вторая диагональ равна 2*6/√3 = 4√3.
Площадь ромба равна 1/2*6*4√3 = 12√3.
2. Вторая диагональ равна 2*3√3/2 = 3√3.
Площадь ромба равна 1/2*6*3√3 = 9√3.