Точка м и к делят окружность на дуги . дуга мк так относится к дуге мnk как 11: 9 . через точку м проведен диаметр мр . найти градусные меры углов треугольника mkp.
1.Рисуем окружность. Отмечаем на ней точки М и К. Пусть МК - это 9-я часть окружности, а МNK 11я часть окружности. Тогда 9+11=20 частей. 360 /20=18 градусов приходится на одну часть из 20 частей Тогда на 11 частей МNК приходится 11*18=198 градусов ; соответственно 9*18=162 градусов приходится на дугу МК 2.Проводим диаметр окружности МР . Соединяем точку Р с точкой К. Получаем треугольник МРК, где угол К = 90 градусов, т.к. опирается на диаметр. Угол Р опирается на дугу МК, градусная мера которой равна 162. Следовательно угол К= 162/2=81 Угол М соответственно равен 180- (90+81)=9 градуса
360 /20=18 градусов приходится на одну часть из 20 частей
Тогда на 11 частей МNК приходится 11*18=198 градусов ; соответственно 9*18=162 градусов приходится на дугу МК
2.Проводим диаметр окружности МР . Соединяем точку Р с точкой К. Получаем треугольник МРК, где угол К = 90 градусов, т.к. опирается на диаметр. Угол Р опирается на дугу МК, градусная мера которой равна 162. Следовательно угол К= 162/2=81 Угол М соответственно равен 180- (90+81)=9 градуса