Точка M лежит на стороне ВС параллелограмма ABCD, причем BM:MC=3:2.Выразите векторы AM и MD через векторы a=AD и b=AB.Обязательно с чертежом Сделать очень подробно не кратко.
Через любые три точки, которые не лежат на одной прямой, можно провести только одну плоскость.(аксиома) Через две пересекающиеся прямые можно провести плоскость, притом только одну (следствие из аксиомы) Прямые а и b пересекаются, следовательно, они лежат в одной плоскости, и эта плоскость пересекает плоскости α и β . Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Следовательно, точка пересечения прямой b с плоскостью β будет лежать на прямой, параллельной прямой АD. Проведем прямую параллельно АD. Точка ее пересечения с прямой b будет точкой пересечения b и плоскости β.
Через две пересекающиеся прямые можно провести плоскость, притом только одну (следствие из аксиомы)
Прямые а и b пересекаются, следовательно, они лежат в одной плоскости, и эта плоскость пересекает плоскости α и β .
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Следовательно, точка пересечения прямой b с плоскостью β будет лежать на прямой, параллельной прямой АD.
Проведем прямую параллельно АD.
Точка ее пересечения с прямой b будет точкой пересечения b и плоскости β.
1) Дано: ΔАВС, D - середина АВ, Е - середина ВС, AD = CE.
Доказать: ΔBDC = ΔBEA.
Доказательство:
AD = DB, так как D - середина АВ,
СЕ = ЕВ, так как Е - середина ВС,
AD = CE по условию, значит
AD = DB = СЕ = ЕВ, а следовательно
АВ = ВС.
В треугольниках BDC и BEA:
ВС = АВ,
DB = EB,
∠B - общий, ⇒
ΔBDC = ΔBEA по двум сторонам и углу между ними.
2) Дано: ΔKLM - равносторонний, А - внутренняя точка ΔKLM,
AK = AL = AM.
Доказать: ΔKLA = ΔMLA.
Доказательство:
АК = АМ по условию,
LK = LM как стороны равностороннего треугольника,
AL - общая сторона для треугольников KLA и MLA, ⇒
ΔKLA = ΔMLA по трем сторонам.