Точка M находится вне плоскости параллелограмма ABCD. Сторона AB параллелограмма ABCD равна 6 см. Высота от потолка A до стены BC составляет 3 см, что делит высоту стены на равные части. Найдите длины срединных линий, параллельных основанию треугольников MAD и MBC.
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
1) 2+7=9
360°:9=20° в одной части.
Значит дуга АМС имеет градусную меру 40°
Угол АОС - центральный угол, измеряется дугой на которую он опирается.
∠АОС=40° ⇒∠АВС=140° ( сумма углов четырехугольника равна 360° и углы ВАО и ВСО - прямые)
Отрезки касательных, проведенных к окружности из одной точки равны, АВ=ВС
Треугольник АВС равнобедренный с углом 140° при вершине, значит углы при основании (180°-140°):2=20°
О т в е т. 20°; 140°; 20°
2) 4+5=9
360°:9=20° в одной части.
Значит дуга АМС имеет градусную меру 80°
Угол АОС - центральный угол, измеряется дугой на которую он опирается.
∠АОС=80° ⇒∠АВС=100° ( сумма углов четырехугольника равна 360° и углы ВАО и ВСО - прямые)
Отрезки касательных, проведенных к окружности из одной точки равны, АВ=ВС
Треугольник АВС равнобедренный с углом 100° при вершине, значит углы при основании (180°-100°):2=40°
О т в е т. 40°; 100°; 40°
Сторона, к которой проведена высота, равна 3+12=15 м.
Высоту нужно найти.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
h²=3*12=36
h=√36=6 (м)
Ѕ=h*a:2
S=6*15:2=45 м²
Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы:
Р=a+b+c
а=√(3*15)=3√5 м
b=√(12*15)=6√5 м
Р=15+9√5 (м)
Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.