Точка М рівновіддалена від вершин правильного △АВС і знаходиться на відстані 16 см від його площини.Знайти відстань точки М від вершин трикутника,якщо S△=54√3 см2
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему. ==== Смотрите рисунок, приложенный к ответу. Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет, Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: Отсюда: Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше . Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
Во первых, хорда не должна превышать размера диаметра окружности. Сначала нужно с циркуля измерить длину отрезка, потом совместить с диаметром окружности, не изменяя раствора циркуля. В случае, если второй конец циркуля выходит за пределы окружности, задача не имеет решения.
Во-вторых, если вышеуказанное не выполнилось, то надо совместить первую ножку циркуля, не меняя раствор циркуля, с любой точкой на окружности, а второй ножкой циркуля подобрать другую точку на окружности. Вообще-то, если отрезок меньше диаметра окружности, то получатся две искомые точки, или два отрезка. В случае же, когда отрезок равен диаметру точки В и С совпадают.
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет,
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть:
Отсюда:
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше .
Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
Найдем, наконец,
Это ответ.
Во первых, хорда не должна превышать размера диаметра окружности. Сначала нужно с циркуля измерить длину отрезка, потом совместить с диаметром окружности, не изменяя раствора циркуля. В случае, если второй конец циркуля выходит за пределы окружности, задача не имеет решения.
Во-вторых, если вышеуказанное не выполнилось, то надо совместить первую ножку циркуля, не меняя раствор циркуля, с любой точкой на окружности, а второй ножкой циркуля подобрать другую точку на окружности. Вообще-то, если отрезок меньше диаметра окружности, то получатся две искомые точки, или два отрезка. В случае же, когда отрезок равен диаметру точки В и С совпадают.
Вот и все.