Точка М равноудалена от сторон прямоугольного треугольника АВС на 5 см. Катеты этого треугольника равны 9 см и 12 см. Найдите расстояние от этой точки до плоскости треугольника.
Объяснение: диагонали прямоугльника при пересечении делятся пополам образуя 2 равных равнобедренных треугольника АВО и СОД. Поскольку эти треугольники равнобедренные, то <АВО=<ВАО=<СДО=<ДСО. Сумма углов треугольника составляет 180°, поэтому сумма углов АВО и ВАО =180–60=120°, поскольку каждый из них равен, то <АВО=<ВАО=<СДО=ДСО=60°. Следовательно ∆АВО и ∆СДО - равносторонние. Рассмотрим полученный ∆АВС. Он прямоугольный где АВ и ВС - катеты, а АС - гипотенуза. Поскольку <ВАО и <ВАС является общим в ∆АВО и в ∆АВС, то <АСВ=90–60=30°, так как сумма острых углов прямоугольного треугольника составляет 90°. Катет АВ лежит напротив угла АСВ=30°, поэтому он равен половине гипотенузы АС, следовательно АС=6×2=12см. Диагонали прямоугльника равны, поэтому АС=ВС=12см
ответ: 12см
Объяснение: диагонали прямоугльника при пересечении делятся пополам образуя 2 равных равнобедренных треугольника АВО и СОД. Поскольку эти треугольники равнобедренные, то <АВО=<ВАО=<СДО=<ДСО. Сумма углов треугольника составляет 180°, поэтому сумма углов АВО и ВАО =180–60=120°, поскольку каждый из них равен, то <АВО=<ВАО=<СДО=ДСО=60°. Следовательно ∆АВО и ∆СДО - равносторонние. Рассмотрим полученный ∆АВС. Он прямоугольный где АВ и ВС - катеты, а АС - гипотенуза. Поскольку <ВАО и <ВАС является общим в ∆АВО и в ∆АВС, то <АСВ=90–60=30°, так как сумма острых углов прямоугольного треугольника составляет 90°. Катет АВ лежит напротив угла АСВ=30°, поэтому он равен половине гипотенузы АС, следовательно АС=6×2=12см. Диагонали прямоугльника равны, поэтому АС=ВС=12см
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1