Точка M равноудалена от сторон угла AOB и принадлежит внутренней области этого угла. Найдите m(LAOM), если: a) m(LBOM)=35°; б) m(LAOB)=80°; в) m(LBOM)=40°26'; г) m(LAOB)=17°
AB = CD так как трапеция равнобедренная, ∠ВАD = ∠CDA как углы при основании равнобедренной трапеции, AD - общая сторона для треугольников BAD и CDA, ⇒ ΔBAD = ΔCDA по двум сторонам и углу между ними.
Значит ∠CAD = ∠BDA. Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине: ОН = AD/2
ΔВОС подобен ΔDOA по двум углам, значит и ОК = ВС/2
КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.
Объяснение: Рассмотрим основание NPK данного тетраэдра. Сторона АВ получившегося прямоугольника параллельна стороне PN треугольника NPK. Треугольники КВА и КNP подобны по двум углам: угол К общий, углы КАВ и КРN равны как соответственные при пересечении параллельных АВ и PN секущей КР.
Из данного в условии отношения отрезков ребра РК примем РА=а, АК=2а, ⇒ РК=РА+АК=а+2а=3а. Коэффициент подобия РК:АК=3:2 . ⇒ PN:АВ=3:2, откуда АВ=2/3 PN=9•2/3=6 дм.
Противоположные стороны прямоугольника равны. Р(АВСD)=2•(АВ+АD)=2•(6+4)=20 (см)
∠ВАD = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников BAD и CDA, ⇒
ΔBAD = ΔCDA по двум сторонам и углу между ними.
Значит ∠CAD = ∠BDA.
Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине:
ОН = AD/2
ΔВОС подобен ΔDOA по двум углам, значит и
ОК = ВС/2
КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.
Sabcd = (AD + BC)/2 · KH = KH · KH = 18² = 324 см²
И вообще, в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней линии трапеции (или полусумме оснований).
ответ: 20 см
Объяснение: Рассмотрим основание NPK данного тетраэдра. Сторона АВ получившегося прямоугольника параллельна стороне PN треугольника NPK. Треугольники КВА и КNP подобны по двум углам: угол К общий, углы КАВ и КРN равны как соответственные при пересечении параллельных АВ и PN секущей КР.
Из данного в условии отношения отрезков ребра РК примем РА=а, АК=2а, ⇒ РК=РА+АК=а+2а=3а. Коэффициент подобия РК:АК=3:2 . ⇒ PN:АВ=3:2, откуда АВ=2/3 PN=9•2/3=6 дм.
Противоположные стороны прямоугольника равны. Р(АВСD)=2•(АВ+АD)=2•(6+4)=20 (см)