точка М розташована на відстані 12 см від кожної вершини квадрата АВСD, кут між прямою МА та площиною квадрата дорівнює 60° . знайдіть відстань від точки М до сторони квадрата
Средняя линия треугольника соединяет середины двух его сторон, параллельна третьей и равна её половине. Обозначим треугольник АВС. АВ=ВС. Если средняя линия соединяет середины АВ и ВС, то основание АС треугольника равно 2•5=10. Тогда сумма равных боковых сторон равна 40-10=30, и каждая из них 30:2=15 см.
Средняя линия может соединять и середины одной боковой стороны и основания. Рассмотрим такой случай для данного условия. Пусть средняя линия равна половине боковой стороны АВ. Тогда каждая боковая равна 2•5=10, их сумма 20 см, и на основание останется 40-20=20 см. Из неравенства треугольника: любая сторона меньше суммы двух других. Следовательно, для данного треугольника основание равно 10 см, боковые стороны по 15 см.
(вектор)АВ*(вектор)АС = (вектор)СА*(вектор)СВ = 20*24*cos(BAC) =
= 20*24*6/10 = 12*24 = 288
по т.косинусов: cos(BAC) = 24² / (2*20*24) = 0.6
(вектор)ВА*(вектор)ВС = 20*20*cos(AВC) = 20*20*28/100 = 4*28 = 112
по т.косинусов: cos(AВC) = 1 - (24² / (2*20²)) = 1 - 0.72 = 0.28
S(ABC) = √(32*12*12*8) = 12*8*2 --формула Герона
S(ABC) = AB*BC*AC / (4*R)
R = 20*20*24 / (4*12*8*2) = 25/2 = 12.5
длина описанной окружности C = 2*pi*R = 25*pi
S(ABC) = 32*r
r = 6
Sкруга = pi*r² = 36*pi
Обозначим треугольник АВС. АВ=ВС.
Если средняя линия соединяет середины АВ и ВС, то основание АС треугольника равно 2•5=10.
Тогда сумма равных боковых сторон равна 40-10=30, и каждая из них
30:2=15 см.
Средняя линия может соединять и середины одной боковой стороны и основания. Рассмотрим такой случай для данного условия.
Пусть средняя линия равна половине боковой стороны АВ. Тогда каждая боковая равна 2•5=10, их сумма 20 см, и на основание останется 40-20=20 см. Из неравенства треугольника: любая сторона меньше суммы двух других.
Следовательно, для данного треугольника основание равно 10 см, боковые стороны по 15 см.