S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.
такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).
ответ:
объяснение:
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.