Точка m - середина ребра bc треугольной пирамиды abcd, точка k лежит на прямой bd, причём b - середина отрезка dk. плоскость a проходит через прямую km параллельно ребру ab. а) докажите, что плоскость a делит ребро cd в отношении 1 : 2, считая от точки c. б) найдите угол между плоскостью a и плоскостью abc, если dabc - правильная пирамида с вершиной d, а её высота относится к стороне основания как 1 : √3.
1872шт.
Объяснение:
Для того чтобы узнать количество дощечек необходимо площадь пола поделить на площадь дощечки (обязательно чтобы площади были одинаковой ед. изменения, если пол в метрах, то и дощечки должны быть в метрах.)
Находим площадь пола (площадь прямоугольника равна произведению длины на ширину)
Sп.=11,7*4,8=56,16 м² площадь пола.
Переводим ед. измерения в одинаковую величину.
1м=100см.
30см=30/100=0,3 м
10см=10/100=0,1м .
Находим площадь дощечки.
Sд.=0,3*0,1=0,03 м² площадь дощечки.
Количество дощечек равно Sп/Sд.
56,16:0,03=1872 шт.
ответ 1872шт.
Обозначение:
Sп.- площадь пола
Sд.- площадь дощечки.
Иногда в таких задачах получается не целое число, тогда округлить нужно всегда в большую сторону. Например у вас получилось 1872,3, округлить в большую сторону 1873.
-1x -1y +1 =0 или y = 1-x.
Объяснение:
Найдем уравнение прямой, проходящей через две точки по формуле:
(X - Xm)/(Xn-Xm) = (Y-Ym)/(Yn-Ym). Тогда
(X - (-1))/(0-(-1)) = (Y-2)/(1-2). =>
(X+1)/1 = (Y-2)/-1 =>
-1x -1y +1 =0 или y = 1 - x.
Второй вариант:
Уравнение прямой можно записать так:
y = kx + b.
Точки М(-1;2) и N(0;1) лежат на этой прямой. значит координаты этих точек должны удовлетворять уравнению прямой.
Подставим координаты точек в уравнение и получим:
2 = k·(-1) + b. (1)
1 = k·(0) + b. (2) Из (2) получаем значение: b =1.
Подставим b в (1) и получим k = -1.
Тогда наше уравнение примет вид:
y = -x + 1 или
-1x - 1y + 1 = 0.