ответ:20 см, 18 см, 14 см.
Объяснение:
Дано:
(O;r) ∆АВС. M,K, F - точки касания.
Р∆АВС = 52 см. AM : MB = 2 : 3. KC = 6 см.
Решение
Пусть одна часть=x см,тогда AM=2x,MB=3x.
MB=BK=3х(по св-ву отрезков касательной)
AM=AF=2x(по св-ву отрезков касательной)
FC=KC=6 см(по св-ву отрезков касательной)
AB=MB+AM=3x+2x=5x
BC=6+3x
AC=6+2x
Зная что периметр равен 52 см,составляем уравнение:
5х + 3х + 6 + 2х + 6 = 52
10х + 12 = 52
10х = 51 - 12
10х = 40
х = 4
Значит одна часть=4 см,а:
АВ = 5 * 4 = 20 см;
ВС = 3 * 4 + 6 = 18 см;
АС = 2* 4 + 6 = 14 см.
2) АВ=7,8 + 7,8= 15,6(см) т.к катет лежащий против угла в 30 градусов равен половине гипотенузы следовательно гипотенуза АВ равна 15,6 см
3) УГОЛ А = 180 - ( 60 +90) = 30 ГРАДУСОВ. ( сумма углов треугольника всегда равна 180 градусам)
4)угол К = 180 - (60 +90 ) = 30 ГРАДУСОВ СЛЕДОВАТЕЛЬНО КАТЕТ MF ЛЕЖАЩИЙ ПРОТИВ УГЛА В 30 ГРАДУСОВ РАВЕН ПОЛОВИНЕ ГИПОТЕНУЗЫ KF MF= 19 : 2 = 9,5 ( СМ)
5) ТРЕУГОЛЬНИК АСВ равнобедренный т.к АС =СВ следовательно угол А= УГЛУ В . Угол С = 90 следовательно угол А и В =(180- 90 ): 2= 45 градусов.
6) угол = 180 - (78 + 90) = 12 градусов
7) АС( катет 16 см) равен половине гипотенузы АВ ( 32 см) следовательно угол В лежащий против катета равного половине гипотенузы равен 30 градусов
8)АС = АВ : 2 т.к катет лежащий против угла в 30 градусов равен половине гипотенузы.
АС = 712 : 2 = 356 ( СМ)
9) (180 - 90 ) : 4 + 5= 10 градусов одна часть
угол А = 10 *4 = 40 ГРАДУСОВ
УГОЛ В = 10 * 5=50 градусов
ответ:20 см, 18 см, 14 см.
Объяснение:
Дано:
(O;r) ∆АВС. M,K, F - точки касания.
Р∆АВС = 52 см. AM : MB = 2 : 3. KC = 6 см.
Решение
Пусть одна часть=x см,тогда AM=2x,MB=3x.
MB=BK=3х(по св-ву отрезков касательной)
AM=AF=2x(по св-ву отрезков касательной)
FC=KC=6 см(по св-ву отрезков касательной)
AB=MB+AM=3x+2x=5x
BC=6+3x
AC=6+2x
Зная что периметр равен 52 см,составляем уравнение:
5х + 3х + 6 + 2х + 6 = 52
10х + 12 = 52
10х = 51 - 12
10х = 40
х = 4
Значит одна часть=4 см,а:
АВ = 5 * 4 = 20 см;
ВС = 3 * 4 + 6 = 18 см;
АС = 2* 4 + 6 = 14 см.